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We study integral methods applied to the resolution of the Maxwell equations
where the linear system is solved using an iterative method which requires only
matrix—vector products. The fast multipole method (FMM) is one of the most effi-
cient methods used to perform matrix—vector products and accelerate the resolution
of the linear system. A problem involviny degrees of freedom may be solved in
CN'™'N log N floating operations, wher€ is a constant depending on the imple-
mentation of the method. In this article several techniques allowing one to reduce
the constan€ are analyzed. This reduction implies a lower total CPU time and a
larger range of application of the FMM. In particular, new interpolation and anterpo-
lation schemes are proposed which greatly improve on previous algorithms. Several
numerical tests are also described. These confirm the efficiency and the theoretical
complexity of the FMM. @ 2000 Academic Press

Key Words:fast multipole method; electromagnetic theory; Scattering, Iterative
Method, Matrix Compression Algorithms, Computational Aspects.

INTRODUCTION

Since the early papers by Rokhlin [21, 26, 50, 51], the fast multipole method (FMM) h:
proven to be a very powerful and efficient scheme for solving the Maxwell equation wi
an integral formulation (see, for example, [56-58]). However, implementation of the FM
proved to be a rather difficult task in part because of its complexity (many lines in a compl
and long code) and because of the need to optimize all the steps of the FMM. Even tho
the asymptotic complexity i©® (N log N), whereN is the number of degrees of freedom,
the constant iNO(N log N) is large and thus several “tricks” must be used to reduce i
(see, for example, the article by Bindiganavale and Volakis [9]). These are presented in
article.
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The object of this paper is to give a general overview of the implementation of the FMN
It tries to address the different problems and options that someone willing to implement 1
FMM will encounter.

We would like to emphasize that the application of the FMM to Maxwell is very differen
from its application to the other fields, such as molecular dynamics simulatidogdy
problem (for an introduction see [37, 42]), electrostatic or magnetostatic, Laplace equati
Hartree—Fock theory, Yukawa potential [3], etc. All these applications of the FMM deal wit
kernels like ¥|r —r’|P, wherepis an integeip > 1 (compare to exoc |r —r’|)/|r —r’| for
the Maxwell equations). We now review some of these applications (see, for example, [:
to get a general view of all the applications). A variant of the FMM, called the continuot
fast multipole method [62] was developed for example to solve Hartree—Fock probler
and density functional calculations [14, 15, 45]. See also [13] for a recent descripti
of the LinK algorithm. The reader will refer to [59] for a recent review on fast method:
(including the FMM) for molecular dynamics simulation and to [44] for an applicatior
of the FMM with periodic boundary conditions. A significant effort was made in this
area which led to several optimizations of the original algorithm (see [16-18, 34, 61
However, it must be noted that these applications differ from electrodynamics applicatic
for the following reasons: the expansion formulas and issues such as the total comple
of the computation are very different; the growth of the number of terms in the multipol
expansion with the size of the cluster is specific to the electrodynamics; and moreover, th
are specific issues related to the instability of the method when the electrical size of |
smallest clusters goes to zero. The error estimations are also very different. We will re
the reader to [35, 36] for the particle system problem and to [22] for the Maxwell probler
etc. These differences can be seen in the fact that most of the applications of the FN
deal with kernels which are smooth functions with slow variations (regarding this conce
see, for example, [27]). To the contrary, in this paper we deal with an oscillating kern
exp(ix|r —r'/Ir —r’|.

The first section proposes an interpretation of the FMM in terms of plane wave supery
sition. This will make the physical interpretation of the FMM clearer. Various tricks, whicl
can be found in [55], are then recalled, which allow one to reduce considerably the num
of matrix—vector products to perform, in particular for the combined field integral equatiol

The second section will address a key tool needed for the FMM: fast interpolation a
anterpolation schemes. We will recall the currently available schemes and propose a var
of the sparse algorithm suggested by Lu and Chew in [43]. It reduces the complexity of t
FMM to a minimum of O(N log N). The improvement of the new algorithm compared to
Lu and Chew'’s original algorithm consists in an increased accuracy and a reduced cons
for the complexity.

The third section will consider the ray propagation concept of Wagner and Chew [6
and will show the possible domain of application of this method. The main conclusion
that it should be used for the single step FMM but should perform poorly for the multiste
scheme.

The fourth and fifth sections describe a few details of the implementation, regardi
the number of poles to take at each level and the memory requirements. We propose
algorithm to reduce the memory by a factor of 2.

The last section is concerned with numerical tests. A scattering sphere is studied
several frequencies and an industrial test case is considered, called the CETAF. We com
our code, using the FMM, with an industrial code, SPECTRE, of Dassault-Aviation.
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General notations:

I A

A wavelength

K wave numbek = 2 /A

Vr 2D-divergence onthe surface

h®  spherical Hankel function of the first kind
Pn Legendre polynomials

Pn  associated Legendre functions

Z Z=120r

1. THE MULTILEVEL FAST MULTIPOLE METHOD

1.1. Plane Wave Approximation

Since many articles are devoted to the mathematical aspects of the FMM, we will skip
mathematical derivation of the algorithm. For that we refer the reader to previous artic
([21], for example, or [55]), which give the details of the method.

Here we have chosen to start with a physical interpretation of the FMM which will mak
clear to the reader the kind of approximation that is made with the FMM.

Let us consider a simple radiating point located at the oRfiR) =€*" /r, where the
observation point i = (r, 8, ¢) in spherical coordinates.

The sphere is denoted by

& = {x e R%/|x| = 1}.
We denote in the following bi; p(s) a function (“transfer” function) defined o,

@m+ 1M

hiy (| P|) Pm(cogs, P)), 1)
4

M_

Tip(s) =
0

3
I

where the integdris a truncation paramete®, is a vector ofR?, and coss, P) is the cosine
of the angle betweesandP.
The FMM is based on the formula
eIK|P+M|

_ H I (S, M)
PIM _"‘lﬂToo/sze Ti.p(9), (2
whereS? is the sphere of radius 1 andlis the scalar product. Equation (2) can be approx-
imated, after discretizing the integral &3, by

eIK|P+M|

m ~ K ;wkews‘(’M)TLP(S«),
wheres, are discrete directions & andwy quadrature weights. The idea behind the FMM
is thus to approximatdR(P) locally by superposing a finite number of plane waves of
direction of propagatiosy, of frequency z/« and of complex amplitud® p(s). This is
described in Fig. 2.

It is possible under certain hypothesis to simplify this expression and to point out ve
simple properties of| p(S).
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FIG. 1. Convolution onS’.

If k|P| > 1 we can use the asymptotic approximation

I« |P|
h® |P]) ~ 1™ , 3
m ([P <[P 3)
from which we can rewrite the integral as a convolution
eIK\P+M| eIK|P| | ’m + 1
— lim uc(s M) P.(co s, P
P+M| [P |»+oo/ ' D, g Pinlcoss P)
edPl cogs, P)) — cogs, P
— lim +1 gl (s:M) R (cogs, P)) — Ri(coy ))' ()
|P| 1=+400 47 Jg 1 - cogs, P)

The function

(2 +1) R(cogs, P)) — R i(cogs, P))
4 1—cogs, P)

behaves like sith (X — Xg)) /X — Xo and converges to a Dirac function located at P/|P|
asl - + oo (see Fig. 1).

Considering the remarks on (4), we proved that there are three regions of approximati
If P is far enough from the origin theR(P) can locally be approximated by a single plane
wave, with direction of propagatioR/|P|. As P gets closer to the origifR(P) will be
approximated not by a single plane wave but rather by a superposition of several plane wa

e |P| — +o00: one plane wave direction;
e |P|> 1. afew directions arouni/|P|;
e |P|=0(1): all directions have to be considered.

Close field interaction  Far field interaction Limit at infinity
WAL 444
Radlatm\g point 3 ////’ §<y \\/ i
P E: &
D R -
= = //
R 0N
2 1l %‘

FIG. 2. Plane wave approximation.
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In a multilevel implementation of the FMM, since the clusters never get very far fror
each other (relative to their size), we must consider all the discrete direstitmebtain a
valid approximation. For a more complete description of those properties see Section 2

1.2. Electric Field Integral Equation

We present the application of the FMM to the resolution of the EFIE (electric field integr
equation).

The resolution of the EFIE with a Galerkin method leads to the resolutidvl@= b
with M andb defined by

gielx—y] 1
M) = /r ey (Ji (X3~ 5 Vi (¢ j<y>) dr(x) dr'(y)

b= — / EP°()3J; () dI (%),
kZ Jr

whereJ;j (x) andJ;(y) are the Rao-Wilton—-Glisson basis functions (see [47]) Efffdis

the tangential part of the incident field. See Fig. 3.

The resolution of this linear system with a dense complex matrix can be done wi
an iterative method (bi-conjugate gradient, GMRES, etc.). The CPU intensive part of 1
resolution becomes the computation of matrix—vector productsMith

We denote byM’ the matrix

. def e|K|Xi_Xj|

i’]_4-J'L'|Xi —Xj|.

The FMM can be applied successfullyi'. Let us consider two clusters of poings
and P,, of centersO; and O,. For all pointsx; in P; andx; in P, we can accelerate the
matrix—vector product using the plane wave expansiolof,

Mi/,j — Z CUpeuc(sp,xi701>-|-|’ol_02 (Sp)em(sp,ozfxn’ (5)
p

wheres;, are the quadrature points & andw,, their weight. We will callT; o,—o,(sp) the
“transfer function” associated to the pair of clusteeg, (P.).

We now explain how a product withl can be decomposed into products with.

If the edges and | are far enoughl; ; is a regular integral and can be approximated
by a numerical integration with Gauss quadrature points (typically three Gauss points
triangle).

We denotee] a vector with three coordinates, whejreorresponds to the Gauss point
Xj, ande} a scalar.

edge q

FIG. 3. Domain of definition 0fJ,(x).
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The product ofM by a vectora is obtained by multiplyingW’ by e’ and bye®

Ma= M’¢e and M€ (6)
with
e E'w; Y ad (x) (7)
r
def |
e = -W, ZarVrJr(xj), (8)

where the sum onis a sum on the edges of the triangle containingndW; is the weight
associated with the quadrature pomt

The vectou = Ma can then be reconstructed frdties M'e? and from s %' M’eS with
the formula

I
Ui = Z\Nr (<Ji (%), f;}> + ;VFJi (%) frs) )
r
where the sum onis a sum on the Gauss pointsfor which J; (x,) #0.

1.3. MFIE and CFIE Formulation

Some modification have to be made in order to apply the FMM to the magnetic fie
integral equation (MFIE) and combined field integral equation (CFIE) formulations. Thos
modifications lead to an optimal implementation.

The MFIE is defined by

1 [ / e Iyyd Hine

59 XN+ Vy———— xJ(y) F(y)} = )

2 r Arix — vyl .t

wherex is the vectorial product artddenotes the tangential part of a vector. This equatior
leads to the following linear system, with a Galerkin method,

<[ X—Y|

}/Ji(x)-Jj(x)dI‘(x)+/dI‘(x)Ji(x)-n(x) x/dF(y)Vyi
2 r r r 47'[

Xy - Jj(y)dry)

=/dnmmarmmxHFux
r

where the scalar product is denoted by a dot.
To achieve a better convergence we use the CFIE, which is a linear combination of EF
and MFIE defined by

CFIE = oEFIE+ (1 — a) - MFIE.
K

The combined field integral equation has the advantage of having a much better condit
number than both EFIE and MFIE. Moreover, an appropriate choice @fminates the
convergence difficulties due to possible resonances on the scattering object. Thus it is
method of choice for numerical applications.

However, a closer look at MFIE and CFIE reveals that the FMM cannot be applied direc
to those formulas or at least not in a straightforward way as for EFIE.
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Considering Eqg. (5), we can derive three other formula:

% — %wpeIK(Sp~X—O1)T|’Olioz(sp)elk(sp,oz—y)
Vxélf;()::yl)/' —_— zp:a)pew(Sp’x_Ol)Tl,Ol—oz(sp)ewsp’oz_y)Sp

y4:TXX_y|y| R ;a)pe“(<sp’x*ol>-r|,01—02(Sp)eIK(Sp’027y>Sp
XVyA;TXX_yly' — 2 Zwpem<sp,x—01)-|-l.ol_oz(sp)em(sp,ozfy)Sp ® Sp.

p

Using these formulas we can derive a scheme adapted to EFIE, MFIE, and CFIE.

EFIE

We can reduce the number of matrix—vector products from four to a minimum of thre
with the following trick.
We denote by; the Gauss quadrature points on the surface of the scattering object.

Reduction to four matrix—vector productsNow we consider two cluste® andQ that
are separated by at least one diameter. The sub-mdf(iR, Q) is defined by

) M/ if X, € Pandx; € Q
M(P, Q)i,j = .
0 otherwise

We defineM (P, Q) in a similar way.

The product ofM’(P, Q) with a scalar quantity] can be accelerated with the FMM.
The algorithm can be decomposed in three steps:

The first step of the standard FMM consists in computing the radiation fun€&ipn
defined onS? with the formula

FQ(Sp)= Z agelk(sp,OQ—Xj)’
i/xj€Q

whereOQq is the center of the cluster.
The second step (transfer) consists in the application of the transfer function

Gp(sp) = TI,Op—OQ (sp)Fa(sp).

The final vector of the matrix—vector product is denotediby
The last step of the standard FMM consists in an integratioB°dor all Gauss points
Xj € P,

U =) wpe X" Gp(sp).
p

With this method a matrix—vector product wikh(P, Q) is decomposed into four products
with matrix M’ (P, Q), three products for the vectorial quant&y/and one fore®.
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Reduction to three matrix-vector productsthe first and last steps can be modified
adequately. The trick to reduce the number of matrix—vector products is the following. V
denote byFq(sp) andGp(sp) two vectors defined for all directiorsg € S2. Then a matrix—
vector product can be performed for the EFIE formulation with a modification of the firs
and last step only of the FMM:

1st step:

Fa(sp) =D _a > W;e 0 g (x)) — (sp. Jr (X}))Sp).- 9
r i

The reader will compare this formula with the previous method where we had to compt

vdefwjzarJr(X) eSdeflezarVrJ X))

followed by

U
Z elK(Sp,OQ—Xj> eJ .
&

i/xj€Q

The sum omr in Eq. (9) is a sum on all the edges in clus@rwhile the sum orj is a sum
on all the Gauss points for which (x;) # 0. We recall that the Rao—-Wilton—Glisson basis
function J; (x) has nonvanishing valuesly on the two triangles that have the edgan
common.
The second step of the FMM is applied to each componeR0$,) as before and we

obtain a functiorGp (sp).

Last step: With this new formula for the FMM, the product M (P, Q)a is obtained
with

U, = Z WJ Z wpelK<Sp’inoP> (‘]I (XJ )7 GP(SP)>’
i P

where the sum omp is a sum on all the directiors € > and where the sum ojis a sum
on all the Gauss points for which(x;) is different from zero.
With this method a matrix—vector product with the FMM reduces to three matrix vectol
with scalars: one for each componentef andGp.
MFIE

With the same method we have to perform three matrix—vector products, with the fc
lowing formula for the first and last step of the FMM:

1st step:

Fa(sp) =Y a » Wje 0] (x)).
r

Last step:

Ui =—tkc > W) Y ope X013 (x)) x (X)) x Sp]. Gp(Sp)).  (10)
j p
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This formula is a consequence of

(Ji (X)), n(xj) x (Gp(Sp) x Sp)) = (Gp(Sp) X Sp, Ji (Xj) X N(X)))
= (sp x (Ji (X)) x N(X})), Gp(Sp))
—((Ji(xj) x n(Xj)) x Sp, Gp(Sp))

since the term
(Ji (X)), n(Xj) x (Gp(sp) x Sp))

corresponds to the computation of

i [x—y|
/ dr<x><Ji 00,000 x [ X x Vgt — dr<y>>

1| X—Y|

/dr<x)<J (%), n(X) x/dr<ywy4 Xy <N ary)

\/

Thus formula (10) corresponds to the MFIE formulation.

CFIE

We notice the fact that
([Qi(xj) x n(Xj)) x Sp], sp) =0,

from which we can deduce a scheme for the CFIE formulation.

1st step:

Fa(sp) =D _a > Wje O[3 (x)) — (sp, Ir (X)))Sp)]-
r i

Last step:

u = Z\Nj pre”“(sp’x"*op)(odi (X)) + A= )[Ji (X)) x n(xj)) x sp], Gp(sp)).
i P

The reader will refer to an article by Song and Chew for a similar scheme [53].

2. INTERPOLATION SCHEMES

Notations:

Legendre polynomials P (cosv),l =0
associated Legendre function®y (cosd), —| <m <I,l >0
spherical harmonics Ymi@,¢), -l <m=<I1,1 >0
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These functions are defined by

d_ef 1 dI(X2 1)I
R X) CITr T

( ) d_Gf ( m)' (1/2)md H(X)
Ty P00 E D™ @+ D @ =) e

Pni(X) =4/ (2 +1)

def 1 "
Ymi (6, ¢) = EP' (cosg)e™?,

The set of function¥, defines arl2 orthonormal basis of 2(S?). The functionsP,, are
the usual associated Legendre functions. We normalized them so that

1
/ (P (0)2dx= 1
-1

Recursion Relations and Summation Formulas

We very briefly recall some very useful formulas:

2+1
VI+m+ 1Pni11(X) = F{«/ m X B (X)— \/;(l‘l'm)Pml 1}

+1+md+1-m (I=1-my+m)
2] +3 Pm,l+1 =V 2 +1x Pml(x)_\/ 1 _1 Pm,l—l(x)

+m+2D(d+m) A =m(-m+1)
\/ 353 Pmiy1 = \/ A1 Pm,i—1(X)

— /2 +1y/1— X2Pp_1, (X).

The first terms needed to start the recursion are, for example,

2m+12m_1...§(1_x2)m/2
2Zm 2m-2 2

Pmm(x) = (_l)m\/

2m+12m_l...§(1_x2)m/2x.
2Zm 2m-2 2

Pm,m+l(x) = (_1)m\/(2m + 3)

In the rest of the paper we will use the summation formula

(y—x) Z(Zm + 1) Pn(X)Pm(y) = (N + 1)(Pry2(Y) Pa(X) = Pa(Y) Pay1(X)).
m=0
2.1. Choice of Sample Points 0%’

There are several possibilities for the choice of sample poin®?ofihe most straight-
forward is a uniform distribution of points:
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This choice has the advantage of being simple but does not allow a very accurate integra
of spherical harmonics. It requires twice as many points as with the Gauss—Legendre poi

A better choice are the Gauss—Legendre points. We want to integrate exactly the sphe
harmonics, which are defined by

Y1 (0, ¢) = €M Py (sing).

The integral ors? is
/ €™ P (sind) cost d de.
2
Thus it appears that if we compute this integral using Fubini’s theorem

21 T
dg em® / dé Pmi(sing) cosd
0 0

the optimal choice of sample points are uniform pointsfoand Gauss—Legendre points
for 6;. With this choice of points, we can integrate exactly\all, -l <m<I1,0<I <L,
with L + 1 points in thep direction and=}! points in they direction.

There is a simple proof of this fact. For # 0 the discrete integral, Lz—fle'md" will be
equal to zero. Thus independently of the choice of pdinthie integration is exact for all

m = 0. Now form =0, we can rewrite

T 1
/ do R (sind) cosp =/ R (x) dx
0 -1

and the integration is exact if we use Gauss—Legendre points Binga polynomial (the
Pni are in general not polynomials).

However, even better choices can be made with respect to the number of directions
S?. One of these is explained in [44]. This optimal choice of sampleS§%as guided by
considerations on set of points invariant under groups of rotations. For the circle, inthe ¢
of unit weight function, the optimal choice of points is evenly spaced points. In the ca
of the sphere McLaren considers sets of points invariant under one of the finite groups
rotations associated with regular solids.

If g is the order of the group, the use of an invariant formula reduces by a factpr of
the number of independent surface harmonics for which the formula must be made ex
This is proved in [44]. The most spectacular result is a formula with 72 points integratir
exactly 255 spherical harmonics. McLaren also gives a sequential procedure for obtair
formulae with as many points as needed (Section 7.2 in his paper).

However, such a choice of points is much more difficult to code and leads to increas
difficulties when trying to obtain a fast interpolation scheme using those points. As we w
see, this is much easier with the Gauss—Legendre points.

2.2. Interpolation Algorithms

There are several interpolation algorithms available. We will discuss here the scheme
to Alpert and Jakob—Chien [5] and the one due to Song, Lu, and Chew [40, 41, 53].
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Another possible scheme is the Lagrange interpolation for which simple error analy
can be done. The mathematical analysis shows that the convergence is exponential a
number of points o$? increases (see [40]). It should be noted that we interpolate functior
which have a finite bandwidth in the Fourier space. Thus optimal efficiency can only |
attained if we take advantage of this property. More general interpolation algorithms su
as Lagrange interpolation or B-splines are not optimal in this case.

Finally, with uniformly spaced samples a few other algorithms are available, such as
[11, 12]. These use the approximate prolate spheroid series (see [38]) and the samg
window (Chebyshev sampling series; see [39]).

2.3. Sparse Interpolation

When the size of the problem becomes significant (above 100,000 degrees of freed
the interpolations and anterpolations which have to be performed to transfer the informat
from the lower level to the upper level and vice versa become significant in terms of CP
Several levels (between 5 and 10 for larger cases) are needed and the upper ones invc
larger and larger number of points & (hundreds of direction® andg). This problem is
specific to the Maxwell case. Applications of the FMM to other areas (molecular dynamic
electrostaticN-body problem, etc.) do not have this problem.

We now describe the sparse approximation scheme (Lu and Chew’s scheme) used fo
interpolations and the anterpolations.

Position of the Problem

We denote byf a function defined 01$? and bys a point of $°.
We will call f afunction that is band-limited of degréeif

FO,8)= > fuYm(©, ).

m,I <K

The set of function¥;, have the interesting property of uniform resolution®n This
means that any rotation df can be represented by the same expansion with appropriate
transformed coefficients. Thus even though the pointSbhave a nonisotropic distri-
bution the property of uniform resolution &, ensures that the FMM is an isotropic
scheme.

We denote byby, ¢x), 1 <k < K, a set of quadrature points & and bywy their weights,
such that they integrate exactly all the spherical harmonics of degree inferitt.tove
denote byfy, 1 <k < K, the value off at each node and bfy, its value at the interpolated
nodes(dy, ¢), L<k < K’.

The integerK’ is supposed to beroportional to K (for the FMM K’ =2K). This
hypothesis is important in order to evaluate the total complexity of the algorithm.

The interpolation or anterpolation consists in performing the following linear transfol
mation on fy,

fio =) Yo b1 > Y Orc. pooxc fi

m,I <K k

for all k', whereY;:, denotes the complex conjugate. If we define the following rectangula
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matrix A of sizeK’ x K,

Ack =D YO b)Y (B pr ok

m,l <K

then the interpolation/anterpolation is a simple matrix—vector product
fo = Z A fi.
k

However, the complexity of this transformk§’ x K. Such a scheme would result in an
N2 complexity for the total FMM, wherd\ is the number of degrees of freedom. Contrary
to the other applications of the FMM, the interpolation and anterpolation algorithms a
thus crucial in the Maxwell (Helmholtz) case to obtainMfog N algorithm.

Possible Approaches
Three approaches to reducing this complexity are possible.

e The semi-naive scheme is the most straightforward and is the one from which Alp
and Jakob-Chien started their analysis in [5]. The semi-naive scheme consists in perforn
a forward FFT, a dense matrix—vector product ondtengles, and a backward FFT. This
scheme will be preferred when the size of the problem is small. It has a greater asympt
complexity (K1-°) but performs well for small clusters. Moreover this algorithm is exac
(in exact arithmetic).

e The scheme due to Alpert and Jakob-Chien is described in [5]. The first step,
before, is a forward FFT og. Then the dense matrix corresponding todtengles is com-
pressed and expedited with a 1D-FMM. Yarvin and Rokhlin [62] present a generalizati
of the 1D-FMM applicable to Alpert and Jakob-Chien’s interpolation algorithm. See als
[25, 61]. Finally a backward FFT is performed @nlts complexity isO(K log K). This is
an approximate algorithm.

There are other schemes with similar complexity: see [23, 24].

e The last scheme is the one used in the MLFMA variant of the FMM due to Chev
Lu, and Song and is used in FISC. It consists in a sparsificatigh @e now describe in
greater details this scheme since our new scheme is a variant of this one. Its complexi
O(K).

The idea of the sparsification comes from the 1D Fourier transform. If we replace t
spherical harmonics by an exponential function the expressiéniefeplaced by

2 21 |/ 2r
BM<= el éhﬁke—nrk
K Z
—K<l<K

o eu2n(K+1)(l§—’,—§ _ e—|2n|<(§—’,—§
T K e'zn(%_ﬁ -1
_2n sin (2K + 1)(% — %)
T K sinm (& — ¥)
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15 L "MatrixB~  +
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FIG. 4. Interpolation matrix.

This function shows a peak arourfd ~ £ and is decreasing likef)~* when |, —

%I > 1. The width of the peak is of ord@(%). Figure 4 illustrates the value & for
eachk and a giverk’. We plot the discrete values 8« and a continuous function obtained
by replacing the discrete valqge by a continuous variabbe € [0, 1].

Thus it is possible to sparsify the matiBgx and remove all the coefficients smaller than
a given threshold.

Let us now assume that we take a constant number of samples per period. Then f
given accuracy > 0, the number of entries per line with modulus greater thisrequal to
the number of samples in a segment of Ien%fé (width of the peak) centered ét Since
the total number of sample points in [@r] is proportional toK , the number of entries per
line greater tham is of orderC(¢) and thus is a constant independenkobr K'.

The same decrease can be observedgrand thus it is possible to construct a sparse
approximation,&k/k of Awk. With the same type of argument as wiax we prove that
the number of entries id with modulus greater thanis equal toC(¢), whereC is a
function ofe only.

This scheme reduces the asymptotic complexity froK logK) to a minimum of
O(K).

The total complexity of the FMM is reduced fro@(N log? N) to O(N log N).

2.4. New Sparsifying Algorithm

It is possible to greatly improve the sparsification of the matrix. A decreasgxirad
observed withByx means that a significant number of points will have to be considered t
achieve a good accuracy (Rrelative error for example). Thus the compression factor for
Awk Will not be so good.

This slow decrease is due to a discontinuity in the Fourier domain. Multiplyinghys
equivalent to computing a forward Fourier transform, then multiplying by the characterist
function1;_x kj defined by

1 Iflkl<K

1 k) =
-k (k) {O otherwise

and performing a backward Fourier transform.

The slow decrease is due to the discontinuitylaf «;(k). It is possible to achieve a
faster decrease by choosing a function that goes smoothly from 0 to 1 and from 1 to O (
[19] for a similar idea applied in a different context).
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Smoothed characteristic function

081

0.6

modulus

04+

02 r

0 L 1 L 1 L L n
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frequency

FIG.5. Smoothed characteristic functian, = 15, w, = 30.

We now define such a function. We denotedayandw, two positive numbers such that
w1 < wy.
Let us compute the continuous Fourier transform of

(w~+ w1)T _ _
Cosz(iz(wrwlg wr) < w =< —w1
Clwy=1¢1 —w1 < w < wi;
(0 — )1
cos’-(z(wrwl)> w1 <w < wp

see Fig. 5.
This Fourier transform can be computed easily si@¢e) can be decomposed into a
sum of trigonometric functions; the final expression for the Fourier transform is

1
/dwC(a)) elwx = m[sin(a)zx) + Sin(a)j_x)]
_ COS%‘L’ g . w1+ w2
o 1-12 X 2
X(wz — w1)
T=—————.
T

The Fourier transform of the characteristic functipn,, .} is
2 .
— sinwX.
X

The factor cos7/(1 — 72) is thus the one responsible for a faster decrease at infinity.
Whent « 1,

w1 + w2
—X

2
/da)C(a)) e ~ —sin
X 2

Whenzt > 1,
/ dwC (@) € ~ P22 (sin(wyx) + Sin(@iX)).
T

With this smoothed characteristic function we achieve a decreag&iwhich improves
on the previous Ax.
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theta = 90, phi=180 ——
threshold -
Modulus

0.01
0.001
0.0001

i
1.5
2
25 1
Theta 3 3E 0

FIG. 6. Original scheme: log-scale on tkeaxis.

We can now define a new interpolation matrix with improved sparsity. Let us denote |
r K the bandwidth of our Fourier window. The new interpolation matrix is

A=Y I YO di) Yo Ok, drax (12)
m,l<zK
Kk 1 0<l <K
¢t = (12)
(1=K)

Figures 6, 7, 8, and 9 correspond to the new interpolation scheme. The results for
anterpolation scheme are strictly equivalent, the anterpolation matrix being the transp
of the interpolation matrix.

To illustrate the improvement, we plot the modulus of the entries in a given lidgof
and Ag: see Figs. 6, 7, 8, and 9. The line numkécorresponds to the interpolated point
(0', ¢") with 8/ =90 and¢’ = 180. Thed angle is on thex-axis while thep angle is on the
y-axis. The modulus of the entries is on thaxis. This clearly shows that the coefficients
have a much faster decrease, which results in a greater sparsity. The threshold corresp
to a relative error of 1.

The second figure (see Figs. 10 and 11) shows the convergence rate of the error in
approximate interpolation as a function of the number of non-zero entries per kg in

theta = 90, phi = 180 ——
threshold -
Modulus

1

O N OO

T 35
Theta 2573 350

FIG. 7. Original scheme.
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theta = 90, phi = 180 ——
threshold
Modulus

o .5

o

= )
v v OO
[eleleleleh
be Y e NIV oY
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Theta 53 5%0

FIG. 8. New improved scheme: log-scale on thaxis.

and A_\kfk. The number of non-zero entries is on the abscissa. This proves that much be
accuracy can be achieved at a lower CPU cost.

Finally we present a comparison with the semi-naive scheme (with comp@xki€y-°)).
Figure 12 shows that the semi-naive scheme is faster when the clusters are small and the
“sparse matrix” scheme should be used for the larger clusters. The imtégtre number
of non-zero entries per line. With= 9 interpolation points, the “sparse matrix” scheme is
always faster than the semi-naive schemer=e125 the cross point can be situated around
33. This corresponds to a cluster of diameter 10 wavelengths £al9 the cross point is
around 87 (diameter 28 wavelengths).

Moreover, it should be noted that, with a fixed number of interpolation points per line, tt
error slowly decreases with the size of the problem. Thus for a given accuracy the numbe
points should be reduced as the size of the problem grows. See Fig. 13 for an illustration.
example, for a relative error of 1%, the semi-naive scheme should be uskd<f&5 (11
wavelengths); then the sparse scheme should be used with only nine interpolation po
For a 10% relative error the sparse scheme is even more efficient and can be used as
asK > 8 (2.5 wavelengths).

Conclusion of the Section

This improved scheme is a variant of the scheme proposed by Chew, Lu, and Sonc
does not change the asymptotic complexi®/(K)) but reduces its constant. This means

theta = 90, phi = 180 ——
threshold -+
Modulus

3
1.5
2
25 1
Theta 3 3E 0

FIG. 9. New improved scheme.
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T
New improved scheme

Original scheme --—---

0.1

0.01

Relative error

0.001

1 10 100 1000
Number of interpolation points

0.0001

FIG. 10. Convergence rate of the approximate interpolation scheme: log-scale.
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FIG. 11. Convergence rate of the approximate interpolation scheme.
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FIG. 12. Comparison with the semi-naive scheme.
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Degree of the interpolated function

FIG. 13. Relative error for the “sparse scheme.”
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that the cross point with the semi-naive scheme will be lower and that it will result in &

overall faster implementation of the FMM.

Construction of the Transfer List

3. TRANSFER FUNCTIONS-TRANSFER LIST

We now shortly describe the construction of the transfer list. This is a recursive constri
tion where two lists must be built: one corresponding to the close clusters and the ot
corresponding to the clusters for which a transfer must be performed. Those two lists shc

be built simultaneously. See Algorithms 1 and 2.

Optimizing the Construction of the Transfer Functions

A possible optimization can be done regarding the number of transfer functions tt
have to be computed. Since the complexity involved in computing a transfer function

ALGORITHM 1
Construction of the Transfer List

1: FUNCTION RecursiveBuild(Father)
2: for all CloseCluster, close to Fathdo

3: forall NeighborhoodCluster, son of CloseCluster
4 for all CurrentCluster, son of Fathdp
5 if NeighborhoodCluster is close to CurrentClustem
6: Store NeighborhoodCluster in the list CurrentCluster.ListClose
7 else
8 Store NeighborhoodCluster in the list CurrentCluster.ListTransfer
9 end if
10: end for
11: end for
12: end for

13: for all CurrentCluster, son of Fathdo

14:

15: end for
16: End of FUNCTION

RecursiveBuild(CurrentCluster)
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ALGORITHM 2
Main Program

: FUNCTION main()

: CurrentClustet= TopCluster

: Store CurrentCluster in the list CurrentCluster.ListClose
: RecursiveBuild(CurrentCluster)

A WDN PR

much higher than the complexity involved in applying the transfer vector to a cluster, the
recomputation should be avoided as much as possible.

This can be optimized if the clusters are built using an oct-tree, where a cube is subdivic
in height half-smaller cubes, in a recursive way. If the clusters are constructed this way, th
for a given level in the tree, the number of possible transfer ve@grs- Oq is reduced to
a minimum of 316 different vector&g x 7 x 7 — 3 x 3 x 3). Thus an optimized algorithm
would perform the transfers in the following way: see Algorithm 3.

This algorithm will be especially efficient at the lower levels in the tree for which the
number of transfers to be performed is much larger thai83¥6< 7 x 7 — 3 x 3 x 3).

Sparsifying the Transfer Matrix

As first suggested by Wagner and Chew in [58] it is, under certain conditions, possible
sparsify efficiently the translation matrix. This fact should be connected with our observ
tionsin Section 1.1 regarding the number of plane waves needed to approximate the radi
field. It has been shown that when the clusters are sufficiently far away from each ot
the radiated field can be approximated by superposing a limited number of plane wa
with directions close t§Op — Oq)/|Op — Ogq. Figure 1 shows that the transfer function
Ti.0p-00 (), 1<k < K has maximal values around

def Op — Oq

&“Say:m

and then decreases whais far froms;y.
The expression for the transfer function is

|
2m+ Him
Tiop-0o(8) = Z (T)h%)(’doP — Ogl) Pm(coss, Op — Og))

m=0
(see Eq. (1) for the notations). The number of tekimsthis series is related to the diameter
ALGORITHM 3

Algorithm to Reduce the Number of Transfer
Vectors Computed

. for all TVector, a transfer vectato
for all (P,Q), pair of clusters such th@, — Oq = TVectordo
Apply TVector to pair (P,Q)
end for
end for

apsrwdnR
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Transfer Function
Threshold -

Modulus
100
10
1
0.1
0.01

3

1573 55
Theta . 3 3'50

FIG. 14. r =1.1, sparse transfer vector.

of Op andOqg,

Diam(Op) + Diam(Oq)
K
5 ,

~

where “Diam” is the diameter.

We proved that the approximation (3) was valid under the assumiption| Op — Og|.
Thus we expect that the compression rate will depend on the ratio of the distance betw
the clusters to their size, denotedihy

¢ def Diam(Op) + Diam(QOq)
B 2|0p — Oq '

Figures 14-19 illustrate this fact. The relative error is set as before-at(fl@eshold).
The figures on the right correspond to the usual transfer vector. The peak centered arc
6 =90 and¢ = 180 becomes sharper as the distance between the clusters increase. T
fewer terms have to be computed, which results in faster transfers between clusters a
lower complexity for the total FMM.

As before, we can increase the sparsity of the transfer vectors by using a smoot
characteristic function, which allows a smooth decay from 1 to zero. This is illustrated |
the figures on the left. They correspond to a transfer vector with improved sparsity defir

Transfer Function
Threshold -
Modulus

15775 3%
Theta Q37380

FIG. 15. r =1.1, original transfer vector.



Transfer Function

Threshold -+
Modulus
100
10
1
0.1
0.01
0.001
0.0001
0
FIG. 16. r =3.0, sparse transfer vector.
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FIG. 17. r =3.0, original transfer vector.
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FIG. 18. r =6.0, sparse transfer vector.
Transfer Function
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FIG. 19. r =6.0, original transfer vector.
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by

|
2m+ 1m
T6r-0g(8) = D (Th%)(KIOP — Ogq|)Pm(coss, Op — Oq))
m=0
"
h (|Op — Ogl) > Cli'Pu(cogs, Op — Og)).
m=Il+1

@ +
+ 4

whereC}f," is defined in (12). The reader will notice that we do not consider Hankel functior
with indices superior td. This is due to the fact that the Hankel functions diverge wher
| > k|Op — Og|. This formula ensures a smooth decay from 1 to 0 and thus improve
considerably the compression rate of the transfer vector. For the figures the Integer
chosen equal tol2

From these numerical experiments we can observe that the number of interpolat
points decrease like/10p — Og| when|Op — Og| increases. Thus the number of non-
zero elements per line in the sparsified matrix decreases Ji@s1— Og|?.

Remark. Since the total number of samples on the sphere is of dfdand since
there is a decay in/10p — Oq|?, we can deduce that the number of degrees of freedor
in the interaction between the two clusters is of ondferThis fact should be connected
with similar results obtained by [28], later refined by [10, 29]. The concept of degrees
freedom was used successfully by Michielssen and Boag with the construction of the ma
decomposition algorithm (see [45, 46]).

Conclusion of the Section

In a multilevel FMM, the ratia is close to 1 and thus only a poor compression rate ca
be achieved. This limits strongly the usefulness of this sparsifying scheme in a multile
implementation.

However, the compression rate improves greatly wheecomes large compared to 1.
In a one-level FMM, distances between clusters may become large (relative to their si:
Thus this scheme can be used successfully with a one-level FMM, reducing considere
the time spent in computing and applying the transfer vectors for pairs of clusters very
away from each other.

4. NUMBER OF POLES IN THE MULTIPOLE EXPANSION

4.1. Convergence Test

A convergence criterion is necessary to determine where the series
(2 + 1)jih{” (R (cosy) (13)

should be truncated. The notations grespherical Bessel functionp, diameter of the
cluster;hfl), spherical Hankel functiony, distance between the clusté; Legendre poly-
nomials.

Several formulas can be used to evaluate the number of poles needed in the multij
expansion:
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1. Formula found in previous papers (see [50, 54]). A semi-empirical formula is use

| = v+ Clog(m + v), (14)

whereC is some constant and wharés the argument of the Bessel functignThe positive
numberv is equal to the diameter of the cluster.

2. Since this formula is actually a test on the convergence of the fungtiore might
as well consider the modulus ¢f, which yields the criterion that

liw) <e and | >wv.
3. Finally we may test the convergence of the series, which yields the criterion tha
(@ +Djwh®Pw|<e and >0

These different tests when tried numerically gave about the same results, as far as
CPU time/precision is concerned: Fig. 20. The figure was obtained by choosing ditferen
andC for the three methods. These tests correspond to a scattering sphere of radius 1.
wavelength of the incident wave is equal to 0.7. There are 3072 edges and 1026 points,
the FMM has four levels. The CPU timg-@axis) corresponds to the resolution of the linear
system with an iterative method (GMRES) and a CFIE formulation. The precisiari§)
corresponds to the relative error for the solution, defined as the relative difference betw
the FMM and the standard method (full assembly of the CFIE matrix, resolution with tf
same iterative method). Thus it measures exactly the error introduced by the FMM.

However, the figure indicates clearly that to maximize the precision while keeping tt
CPU time at a minimum, the parameters should be set to

1. C=225.
2. €=0.001.
3. €=0.66.

With these parameters a relative error of 80~2 can be achieved. These results depend or
the minimal size chosen for the clusters, which we set, for these particular numerical te
atk.d =1, whered is the size of the cubic cluster (length of the side).

1000 T — T
x I test ——
o (2l+1).jLAl test x|
900 v+C.log(v) test -
800 H

700 [
600 |
500

CPU time

400
300 -
200

I I !

100 1 1 1 1 1 1
0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
Relative error

FIG. 20. Convergence tests.
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4.2. Number of Samples or§?

The previous subsection determined the number of tétmsonsider in the expansion.
However, it remains now to evaluate the number of samples needed to integrate exactly
radiation functions. The position of the problem is the following:

As a simplification we také=v as an approximation of the previous formula- C
log(zr + v). We consider clusteP and its radiation functiofrp (s). The functionFp (s¢)
has a bandwidth df/2 since the diameter of the cluster is equabte|. ThenFp(s() is
multiplied by the transfer functiof oo, (S), which has a bandwidth equalltoFinally
the resulting radiation functioB o (s«) is multiplied bye* & %' =%e) (handwidthl /4) and
anterpolated to obtain the transfer functiGry (s¢) associated with cluste’, one level
below clusterQ. The bandwidth o5 (s¢) being equal td/4 (the diameter of the cluster
isv/2=1/2), we will need to anterpolate the filgt Fourier frequencies. See Fig. 21.

The final bandwidth the function to be integrated is

I I

| .
> +1+ zl(e”“s‘*oo”o‘?) factor) + 2 (anterpolation scheme

Thus the total bandwidth is simply.2For this level, the number af will be 21 + 1, and
the number ob directions(2l +1)/2<1 + 1.

However for the interpolation scheme the bandwidth is much lower. The bandwidth
the function to be integrated is

I I
> (bandwidth ofFp(s)) + > (interpolation scheme

Thus the total bandwidth is only No additional sample points are needed for the interpo
lation.

If we use the new sparsifying scheme for the anterpolation, then with an anterpolat
function of bandwidtirl /4 (width of the window in the Fourier domain; see Eq. (12) for
the notations), the bandwidth of the function which has to be integrated exactly is

SRy P
2 474" A

Thus a good compromise must be found between the compression rate, which requ
largerr, and the total number of samples, which grows witiThe choicer =3 seems
to be a good choice; it slightly increases the number of sampiginsead of 22, while
maintaining an almost optimal compression rate. This choice was made in the figu
illustrating the new sparsifying scheme (Section 2.4).

172

band-width 1 /4

FIG. 21. Number of samples.
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Minimal Size for the Clusters

For extremely large problems (over 500,000 degrees of freedom) the close interactic
which have to be computed in a traditional way and cannot be included in the FMM, m:
take either significant CPU time, if they are recomputed at each iteration, or significe
infout core memory, if they are stored. For example for 500,000 degrees of freedom |
storage of 100 non-zero terms per line would require 1.2 GB memory.

A possible solution is to reduce the size of the clusters. However, these is a minimt
size due to numerical roundoff errors. Even though the series

(2m + 1) jm(v)h$ (u) Pm(cosy)

converges for all 6 v < u, the sequench{}) (u) diverges whem goes to zero. Thus with
double precision computation there is a minimum distad¢céetween the centers of the
clusters, whichis around®'k.d ~ 1/2 (for a relative precision of 1 for the FMM). This

implies a minimal diameter for the clusters:
Minimal diameter for the clusters A/10.

Another constraint is the fact that the kernel for Maxwell is singular and thus analytic
integration must be performed when the edges become too close. This also prevents
clusters from getting too small.

This may prove to be a serious drawback of the method when the number of triang
per wavelength increase (accumulation of points), such as around features like anten
Greengarcet al.[31] derived a specific formulation for the FMM to address this difficulty.

5. MEMORY MANAGEMENT

Regarding the memory management there are several possible options to reduce
memory requirements for the FMM. Here we suggest a simple algorithm which will redu
the total memory by a factor of 2.

By “tree” we denote the memory needed to construct the oct-tree with the appropri
connectivity and allocated at each node of the tree to store the radiation function samg.
on &2

Notations:

PorQ acluster

L number of levels

S apoint ofS$?

Fo(s¢) radiation function before transfer
Gp(s¢) radiationfunction after transfer

The radiation functiorG p (s,) is constructed froniq(s) with the formula

Gp () = Gp(S0) + Ti.0p—00 (S0) Fo(k)-

The usual implementation of the FMM first allocates one “tree” for the radiation function:
Fo(s). Thenthose radiation functions are constructed starting from the smaller clusters ¢
then moving from the lower levels to the upper levels. Once this tree is constructed, anot
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radiation function F

radiation function G

\_/ transfer

<-  disaggregation

FIG. 22. Legend of Figs. 23, 24, 25, and 26.
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FIG. 23. First step.
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FIG. 24. Second step.
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FIG. 25. Third step.
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FIG. 26. Fourth step.
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is allocated to store the functiorp (s¢), which are initialized by applying the transfer
vector to Fo(s¢). Finally, starting from the larger clusters the information contained ir
Gp(s) is propagated from the upper levels to the lower levels.

Thus with this algorithm the total amount of memory that has to be allocated is equal
two trees, one for th&q(s¢) functions and one foGp ().

We claim that it is possible to reduce this amount of memory to a minimum of one tre
plus the size of the level that occupy the more memory.

First we allocate a memory space equal to one tree plus the memory used by the lar
level. Then we start computing the radiation functidigsc) as before, using the first part
of the memory chunk (see Fig. 23).

Then the transfers are performed for the upper level only (level 1) in the remaining chu
of memory (see Fig. 24).

The functionsFq(s¢) computed at level 1 are no longer needed. The memory spa
they occupied can then be reused to propagate the information from the upper level to
one below, at level 2 (disaggregation step). The transfers can then be performed at lev
(Fig. 25) and so on until we reach the lower level (level L—Fig. 26).

6. NUMERICAL TESTS: A SPHERE

All the numerical tests are obtained on a Hewlett—Packard workstation PA-8000, wi
1-GB memory.

6.1. Classical Method

This section presents the numerical results obtained with the “classical” version of t
code, in which the entire matrix is assembled and stored in the core memory. The m
limitation for this problem is the assembly time, which becomes prohibitive very rapidly
as well as the total memory required.

We start with test cases using the Gauss method (Table I). Here is the total CPU tir
as well as the total memory used. “Size” corresponds to the size of the object in ter
of wavelength. “Degrees of freedom” corresponds to the number of edges of the me
“Assembly” is the assembly time and “resolution” is the resolution time. “Total memory
is the memory occupied by the whole matrix.

For the last test, we used the GMRES iterative method. See Table Il. GMRES converg
in 19 iterations without a preconditioner, with a stopping criteria of*1We used the
combined field integral formulation with a coefficient= 0.2

CFIE = «EFIE + (1 — o)~ MFIE.
K

The RCS curves (Figs. 27, 28, 29, and 30) correspond to a comparison between the |
computed numerically and the exact result computed analytically.

The quality of the results depends on the number of points per wavelength that we us
eight points per wavelength for this example, and of the error due to the fact that our me
does not represent very accurately a sphere. For 300 edges, for example, the sphe
meshed in a rather crude way. This is why the numerical results are quite different from
analytical results.
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TABLE |
Classical Method, Gauss Resolution

Size  Degrees of freedom Assembly Resolution Total memory

0.67 300 747s 5.02s 1.44 MB

1 768 41.29s 1.53 min 9.44 MB

2 3072 6.49 min 1.65h 151 MB
TABLE Il

Classical Method, Iterative Resolution

Size Degrees of freedom Assembly Resolution Total memory

2.82 5808 26 min 5.93 min 540 MB

—_
o

Numérical RCSI *

9 Exact RCS - B
8 |
7 4
6 <
g 5 -
& 4 .
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3 4
2 4
9 1
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FIG. 27. 300 degrees of freedom.
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FIG. 28. 768 degrees of freedom.
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FIG. 29. 3072 degrees of freedom.

6.2. Fast Multipole Method

The results obtained with the FMM show that the FMM is very precise and that it reduc
very significantly the resources needed to solve the linear system.

The formulation that we use is the combined formulation witk: 0.2. The iterative
method is GMRES (criteria equal to 1%). For this example we do not use any precondi-
tioner.

We begin with the same tests as with the classical method. “Far away interactior
corresponds to the memory space occupied by the FMM. “Close interactions” correspol
to the central band of the matrix, i.e., the part of matrix which has to be computed exac
with the classical method. “Assembly” corresponds to the CPU time needed to compute
central band. The rest of the assembly time, for the FMM, is negligible. “Iterations” is th
number of iterations needed for GMRES to converge. See Tables IIl and IV.

The RCS (Figs. 31, 32, 33, and 34) is completely identical to the one computed befol

We now present the relative difference between the FMM and the classical method w

two different normsi®> and|?. This error is stable and independent of the size of the
problem. See Table V.

25 : . . l |
Numerical RCS +
a Exact RCS -~
20 ™, |
15 + : |
m 10t 3
z Y
171 +
2| 1
O S
= o1 Jr ! *‘Y A, -
v‘i ,’f Ty ",* \ f *»‘* . /f""‘kﬂ* Mwm‘ﬂ P
R
S5 'l" t“"
+ +
-10 , , . . | |
0 0.5 1 15 2 25 3 3.5

Angle of observation

FIG. 30. 5808 degrees of freedom.
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TABLE 11l
FMM for the Sphere, CPU Time

Size Degrees of freedom Assembly Resolution Iterations
0.67 300 3.6s 14.1s 13
1 768 9.83s 376s 15
2 3072 41.3s 3.68 min 18
2.82 5808 1.3 min 8.7 min 19
TABLE IV
FMM for the Sphere, Memory Space
Size Degrees of freedom Far-away interactions Close interactions
0.67 300 0.31 MB 0.47 MB
1 768 0.58 MB 1.4 MB
2 3072 2.7MB 5.4 MB
2.82 5808 5.7 MB 10 MB
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FIG. 31. 300 degrees of freedom.
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FIG. 32. 768 degrees of freedom.
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TABLE V
Relative Error for the FMM

Size Degrees of freedom Norriy Norm|?

0.67 300 0.00413 0.00273

1 768 0.00681 0.00288

2 3072 0.00917 0.00386

2.82 5808 0.00728 0.00393
TABLE VI

FMM for the Sphere, Small Wavelength, CPU Time

Size Degrees of freedom Assembly Resolution Iterations
4 11,532 2.83 min 20.4 min 21
8 47,628 14.1 min 15h 25

11.3 95,052 38.7 min 3.7h 28
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FIG. 33. 3072 degrees of freedom.
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FIG. 34. 5808 degrees of freedom.
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TABLE VII

FMM for the Sphere, Small Wavelength, Memory Space

Size Degrees of freedom Far-away interactions Close interactions
4 11,532 11.4 MB 19.5 MB
8 47,628 48.4 MB 83.1 MB

11.3 95,052 102 MB 165 MB
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Thanks to the FMM, we are able to solve much larger problems. Here are the resl
obtained when increasing progressively the wavelength. See Tables VI and VII.

The RCS curves are shown in Figs. 35, 36, and 37.

A zoom in the shadow region, for the case with 95,052 degrees of freedom, shows t
the solution oscillates around the exact value: see Fig. 38.

Those oscillations are due to the errors in the numerical resolution. We observe that
RCS reaches a maximum of 2000. The exact valugferr (shadow region) is equal
to 1.55. The difference between the two is very large. Thus the resolution errors beco
apparent. The difference between the RC®fer0 andd = increases with the frequency.
Thus we expect that this oscillation phenomena will increase with the frequency.

To illustrate this observation (Fig. 39), here is the result obtained by simply increasi
the number of points per wavelength:

-8 113.

Those oscillations are reduced by a factor of 1.7. The oscillations around the exact va
with 8 points per wavelength, are equal to 0.44ddetween 3 and (be careful: In Fig. 38
the RCS is shown in decibels). This difference is reduced to 0.26 with 11.3 points [
wavelength.

Number of points per wavelength:

6.3. Convergence of the FMM
The number of terms used in the series (13), Section 4, is computed with the formule
| =v+ Clog(m + v).

See Eq. (14).
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FIG. 35. 11,532 degrees of freedom.
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We choose different values f@ ranging from 1 to 6, in order to observe the reduction
of the error due to the FMM. The value used for the previous tests was 2.25. This is a g
compromise between the CPU time and the numerical precision. See Table VIII.

The RCS curves are all identical to the ones obtained with the classical method. T
difference is too small to be observed.

We observe that after 4 the convergence is stopped. This is due to the numerical inste
ities of the method. Let us describe more precisely the cause of those instabilities.

Numerical Instabilities

The numerical error for the FMM depends on the convergence of the sequence

2m+ 1) jm(@)h$ (U) Pm(w).

The numerical instabilities are linked to the asymptotic behavior of the Bessel functior
which we recall: fom — +o0,

Um

@m+1)@2m—-1)---3-1

em—1)@2m—23).--3-1
- um+l :

jm(U) ~

Ym(U) ~

TABLE VI
Relative Error as a Function of the Number of Poles
in the Expansion

Value ofC

Norm|> Norm|? CPU time
1 0.044 0.0189 4.32 min
2 0.015 0.0069 7.97 min
3 0.0068 0.0032 12.8 min
4 0.00689 0.00304 27.7 min
5 0.00696 0.00303 30.9 min
6 0.00689 0.00302 35.4 min
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The productjm(v)h® (u) converges to 0 bttY (u) — +oo whenm — +oo. The diver-
gence occurs whem > u. For a stable implementation, it is thus necessary to guarante
thatm is inferior tou.

Let us consider the smallest clusters, at the lowest level. We denatthieylength of an
edge of one of those clusters.

The factor corresponds to the size of a clusten(3«a), while the factou corresponds
to the transfer vector, the norm of which is equal to the distance between the centers of
clusters times. The minimum value fou is thus equal to 2a. We haveuni, = %v.

Since the number of terms in the series is given by

| =v+ Clog(m + v),

we observe a divergenceiift+ C log(zr 4+ v) > u. Thus the stability condition reads

2
v+ Clog(mr +v) < Uﬁ (15)
21 v
2 ~015—— . 1
©C < vlog(n +v) 0 5|Og(71 +v) (16)

Whenw tends to infinity this conditionis less and less restrictive sinfdeg(zr + v) — + oo.
However, instabilities might appearifis too small.

As a conclusion, we have to choo€edepending on the desired accuracy and then e
minimal size for the clusters, such that the stability condition is satisfied.

In the code, the length of the side of one cluster is equal to

a=—,
K

where, for our exampleD = 1. For our test case =0.11 and the average length of an
edge is equal to 0.089. The average bandwidth for the central band (close interaction:
equal to 86. It is fairly small but for 100,000 edges the storage is already 206 MB. This
why we tried to reduce it as much as we could.

To illustrate this divergence, we give the maximum value of the transfer functi®3,on
depending o€ andD. See Table IX.

This confirms our analysis of the stability.

Those problems may become a serious obstruction if there is a large concentratior
points in a small area of the scattering object. This leads to an increase in the part of
matrix corresponding to the close interactions. We refer the reader to a recent article
Greengarckt al.[31] that addresses this problem.

TABLE IX
Divergence of the Transfer Function

CoefficientC D=1 D=2 D=4
1 4 4 4
2 10 7 4
3 1¢ 50 50
4 3.1C6 2.1C 410
5 3.10 3.1C¢ 2.10
6 1¢ 7.10 210
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7. ASYMPTOTIC GROWTH OF THE COMPLEXITY

The scattering from a sphere allows us to test the FMM on a large band of frequency :
to observe the growth of the CPU time and memory.

Academic Case

The first numerical test corresponds to a matrix—vector proslugtwhere the matrixvi
is defined by

i =xjl - .
Mij = { Ixi —Xj1 IFi 7 |

0 otherwise

Each coordinate; of u is a random float number. The poinsare uniformly distributed
on the surface, with 10 points per wavelength. The radius of the sphere is equal to one

We reach 1,000,000 points on the surface.

The CPU time corresponds to a single matrix—vector product. The complexity cur
follows very well the theoretical predicted cur@(N log® N). See Fig. 40.

Scattering from a Sphere

We now measure the CPU time of a single matrix—vector product where this time t
matrix is the CFIE matrix

CFIE = «EFIE+ (1 — o)~ MFIE.
K

See Figs. 41 and 42.

The test cases correspond to those presented in Section 6.2. However in Fig. 41,
CPU time forone matrix—vector produanly is represented. In Section 6.2, the CPU time
corresponds to the complete resolution of the linear system with an iterative method.

The curves (Figs. 41 and 42) show that the CPU time and the memory space beh
asymptotically like the theory predicts. Moreover, they show that the FMM should not t
used if the scattering object is too small. Typically the FMM becomes efficient as soon
the size of the object is superior to a few wavelengths.

2 le+07
8 1e+06
&, It
100000 //
2 10000 —— e o
g L o n
2 1000 p-- o
7 100 e =
2 10 v cpu naive nd2 e 73
5 1 b cpumultipale =
35%(f*¥log(f*60))*¥2
5 o 0.35%(f*log(F*60)) :
1 10
frequency (GHz)

FIG. 40. Academic case: matrix—vector product with the FMM.
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FIG. 41. CPU time for a product with the CFIE matrix.

8. NUMERICAL TEST: AN INDUSTRIAL APPLICATION

We now study an industrial test case, the CETAF. This is a standard test case which all
comparison with available codes from aerospace companies. There is no analytical solu
to this problem. The object is shown in Fig. 43.

We computed the currents induced by the incident wave for the frequencies 7 and 15 G

8.1. 7-GHz Case

The mesh has 45,960 edges. Its size is 11.7 wavelengths. We have 9.84 edges per v
length on average.
The incident wave hits the CETAF with an angle of 45

wavelength (0428
shortestedge .00625
longestedge 000674

1000 - :
Numerical result —+—
Theoretical curve N log(N) ---->¢--- "
100 |
@
g 10f
o
o
[=1
5 1t
=
01t
0.01

1 10 100
Wave number

FIG. 42. Memory space used by the FMM.
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Side view

FIG. 43. CETAF.

The performance are shown in Table X. The linear system was solved with GMRES &
was preconditioned with SPAI, which produces a sparse approximate inverse. See [32] f
description of SPAI and [4] for an application of SPAI to the resolution of integral equatior
for Maxwell; see also [6, 20].

Results

A comparison of the RCS computed with our code and with Dassault-Aviation SPECTF
code is given in Fig. 44. Dassaut-Aviation SPECTRE uses a classical method with a
assembly of the matrix and the linear system was solved on a parallel computer wit
Gauss method.

This curve shows two peaks which can be interpreted as follows. The first peak occurs
0 =45 +90° = 135. This corresponds to a reflection of the incident wave on the surface
the CETAF. The second peak corresponds to the shadow region. In this region the scatt
field cancels the incident field. Thus it is a region in which the radiated energy is ve
important. This occurs fof =45° 4+ 180> =225. These peaks are very classical in RCS
problems.

We also present a comparison for the current on the surface of the CETAF. The inten
of the current is shown in Figs. 46 and 47 for the shadow region. Finally the y-coordine
of the real part of the current is shown in Fig. 48. We observe stripes with a period equa
the period of the incident wave.

TABLE X
Performances for the 7-GHz Case

Size: 11.%
Degrees of freedom: 45,960
Assembly: 12.8 min
Resolution: 2.58h
Iterations: a7
Far-away interactions: 31.7 MB

Close interactions: 110 MB
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FIG. 44. 45,000 degrees of freedom, 7 GHz, RCS.
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FIG. 45. 200,000 degrees of freedom, 15 GHz, RCS.
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FIG. 46. 45,000 degrees of freedom, 7 GHz: above.
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Intensite

EDarve - FMM  Dassault - SPECTRE 1-°°l

0.76

0.03 I

FIG. 47. 45,000 degrees of freedom, 7 GHz: shadow region.

The FMM code uses a combined formulation magnetielectric. To the contrary
Dassault-Aviation SPECTRE uses an EFIE formulation. This is the main reason that
observe a slight difference between the two solutions. The error introduced by the FMN
much smaller than the difference between the two formulations. These tests mostly illusti
the factthat EFIE and CFIE are equivalent when the size of the edges goes to zero but the
not produce exactly the same solution if the number of points per wavelength is not sufficie

8.2. 15-GHz Case

The RCS is represented in Fig. 45. This case was too large to be solved with SPECT
Thus we do not present any comparison this time.

Real_Part[Y]
222
E.Darve - FMM Dassault - SPECTRE

FIG. 48. 45,000 degrees of freedom, 7 GHzcoordinate of the real part.
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FIG. 49. 200,000 degrees of freedom, 15 GHz: above.

The intensity of the current is shown in Figs. 49 and 50 for the shadow region. Tl
performances are given in Table XI.

We also gave new figures, the FMM CPU time and the “close interactions CPU time
because for this case we had to adapt the implementation. For such a matrix, the cer
band (close interactions) is too large to be stored. Thus the entries in the central band
either recomputed if the double integral on the surface is numerical (small recomputat
time) or stored if the double integral has to be computed analytically (significant CPU time
Thus only the “singular” integrals are stored. This is why the assembly time and stora
for the close interactions are relatively small. Moreover, since at each iteration some ent

Int it
=% FMM - 15 GHz °‘;"‘8§
! Zone dans 1’ombre ’ !
: e B

= 0.60
041 |
0.21
0.01

FIG. 50. 200,000 degrees of freedom, 15 GHz: shadow region.
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TABLE XI
Performances for the 15-GHz Case

Wavelength: 0.02
Number of points per wavelength: 9.18
Size: 25.0
Degrees of freedom: 183,840
Assembly: 24.4 min
Resolution: 19.7h
FMM CPU time: 13.3h
Close interactions CPU time: 6.5h
Iterations: 53
Far-away interactions: 140 MB
Close interactions: 170 MB

have to be recomputed, we separated the recomputation time for those entries (6.5 h t
from the FMM CPU time (13.3 h total). See table XI.

9. CONCLUSION

The FMM reduces the complexity of the resolution of the dense matrix Kéiinversion
with the Gauss method) to a minimumlgflog N. In this article are reviewed the difficulties
appearing in the implementation of the method. Improving the implementation results
a larger domain of application of the FMM, which becomes competitive, compared tc
naive implementation with a dense matrix, at even loNerA particularly crucial point
of the implementation is the interpolation and anterpolation steps. We here presente
variant of the scheme proposed by Chew and Lu in [41]. Its complex@®yI§), if K is the
number of samples i8?. Compared to Chew and Lu’s algorithm, our scheme improve:
the accuracy while reducing the CPU time. This scheme has to be seen as an alternati
the semi-naive scheme with complexky-°, which performs better for the small clusters.
There are other schemes, albeit with higher asymptotic complékityd K ), proposed by
Alpert and Jakob-Chien and Dembart and Yip (see [5, 24]), to which we have not compal
but it is estimated that the new scheme should be used for problems larger than 50,
unknowns.

Finally we would like to point out that a significant problem was not addressed in th
paper, which is the parallelization of the algorithm. This is a very active area. We will ref
the reader to some very recent publications on this topic: [1, 2, 7, 8, 33, 37, 51, 52].
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