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We study integral methods applied to the resolution of the Maxwell equations
where the linear system is solved using an iterative method which requires only
matrix–vector products. The fast multipole method (FMM) is one of the most effi-
cient methods used to perform matrix–vector products and accelerate the resolution
of the linear system. A problem involvingN degrees of freedom may be solved in
CN iterN log N floating operations, whereC is a constant depending on the imple-
mentation of the method. In this article several techniques allowing one to reduce
the constantC are analyzed. This reduction implies a lower total CPU time and a
larger range of application of the FMM. In particular, new interpolation and anterpo-
lation schemes are proposed which greatly improve on previous algorithms. Several
numerical tests are also described. These confirm the efficiency and the theoretical
complexity of the FMM. c© 2000 Academic Press
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INTRODUCTION

Since the early papers by Rokhlin [21, 26, 50, 51], the fast multipole method (FMM) has
proven to be a very powerful and efficient scheme for solving the Maxwell equation with
an integral formulation (see, for example, [56–58]). However, implementation of the FMM
proved to be a rather difficult task in part because of its complexity (many lines in a complex
and long code) and because of the need to optimize all the steps of the FMM. Even though
the asymptotic complexity isO(N log N), whereN is the number of degrees of freedom,
the constant inO(N log N) is large and thus several “tricks” must be used to reduce it
(see, for example, the article by Bindiganavale and Volakis [9]). These are presented in this
article.
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The object of this paper is to give a general overview of the implementation of the FMM.
It tries to address the different problems and options that someone willing to implement the
FMM will encounter.

We would like to emphasize that the application of the FMM to Maxwell is very different
from its application to the other fields, such as molecular dynamics simulation,N-body
problem (for an introduction see [37, 42]), electrostatic or magnetostatic, Laplace equation,
Hartree–Fock theory, Yukawa potential [3], etc. All these applications of the FMM deal with
kernels like 1/|r − r ′|p, wherep is an integerp≥ 1 (compare to exp(ıκ|r − r ′|)/|r − r ′| for
the Maxwell equations). We now review some of these applications (see, for example, [30]
to get a general view of all the applications). A variant of the FMM, called the continuous
fast multipole method [62] was developed for example to solve Hartree–Fock problems
and density functional calculations [14, 15, 45]. See also [13] for a recent description
of the LinK algorithm. The reader will refer to [59] for a recent review on fast methods
(including the FMM) for molecular dynamics simulation and to [44] for an application
of the FMM with periodic boundary conditions. A significant effort was made in this
area which led to several optimizations of the original algorithm (see [16–18, 34, 61]).
However, it must be noted that these applications differ from electrodynamics applications
for the following reasons: the expansion formulas and issues such as the total complexity
of the computation are very different; the growth of the number of terms in the multipole
expansion with the size of the cluster is specific to the electrodynamics; and moreover, there
are specific issues related to the instability of the method when the electrical size of the
smallest clusters goes to zero. The error estimations are also very different. We will refer
the reader to [35, 36] for the particle system problem and to [22] for the Maxwell problem,
etc. These differences can be seen in the fact that most of the applications of the FMM
deal with kernels which are smooth functions with slow variations (regarding this concept
see, for example, [27]). To the contrary, in this paper we deal with an oscillating kernel
exp(ıκ|r − r ′|)/|r − r ′|.

The first section proposes an interpretation of the FMM in terms of plane wave superpo-
sition. This will make the physical interpretation of the FMM clearer. Various tricks, which
can be found in [55], are then recalled, which allow one to reduce considerably the number
of matrix–vector products to perform, in particular for the combined field integral equation.

The second section will address a key tool needed for the FMM: fast interpolation and
anterpolation schemes. We will recall the currently available schemes and propose a variant
of the sparse algorithm suggested by Lu and Chew in [43]. It reduces the complexity of the
FMM to a minimum ofO(N log N). The improvement of the new algorithm compared to
Lu and Chew’s original algorithm consists in an increased accuracy and a reduced constant
for the complexity.

The third section will consider the ray propagation concept of Wagner and Chew [60]
and will show the possible domain of application of this method. The main conclusion is
that it should be used for the single step FMM but should perform poorly for the multistep
scheme.

The fourth and fifth sections describe a few details of the implementation, regarding
the number of poles to take at each level and the memory requirements. We propose an
algorithm to reduce the memory by a factor of 2.

The last section is concerned with numerical tests. A scattering sphere is studied for
several frequencies and an industrial test case is considered, called the CETAF. We compare
our code, using the FMM, with an industrial code, SPECTRE, of Dassault-Aviation.
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General notations:

ı
√−1

λ wavelength
κ wave numberκ = 2π/λ
∇0 2D-divergence on the surface

h(1)l spherical Hankel function of the first kind
Pm Legendre polynomials
Pml associated Legendre functions
Z Z= 120π

1. THE MULTILEVEL FAST MULTIPOLE METHOD

1.1. Plane Wave Approximation

Since many articles are devoted to the mathematical aspects of the FMM, we will skip the
mathematical derivation of the algorithm. For that we refer the reader to previous articles
([21], for example, or [55]), which give the details of the method.

Here we have chosen to start with a physical interpretation of the FMM which will make
clear to the reader the kind of approximation that is made with the FMM.

Let us consider a simple radiating point located at the originR(P)= eıκr /r , where the
observation point isP= (r, θ, φ) in spherical coordinates.

The sphere is denoted by

S2 = {x ∈ R3/|x| = 1}.

We denote in the following byTl ,P(s) a function (“transfer” function) defined onS2,

Tl ,P(s) =
l∑

m=0

(2m+ 1)ım

4π
h(1)m (κ|P|)Pm(cos(s, P)), (1)

where the integerl is a truncation parameter,P is a vector ofR3, and cos(s, P) is the cosine
of the angle betweens andP.

The FMM is based on the formula

eıκ|P+M |

|P + M | = ıκ lim
l→+∞

∫
S2

eıκ〈s,M〉Tl ,P(s), (2)

whereS2 is the sphere of radius 1 and〈 〉 is the scalar product. Equation (2) can be approx-
imated, after discretizing the integral onS2, by

eıκ|P+M |

|P + M | ∼ ıκ
∑

k

ωkeıκ〈sk,M〉Tl ,P(sk),

wheresk are discrete directions ofS2 andωk quadrature weights. The idea behind the FMM
is thus to approximateR(P) locally by superposing a finite number of plane waves of
direction of propagationsk, of frequency 2π/κ and of complex amplitudeTl ,P(sk). This is
described in Fig. 2.

It is possible under certain hypothesis to simplify this expression and to point out very
simple properties ofTl ,P(s).
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FIG. 1. Convolution onS2.

If κ|P| À 1 we can use the asymptotic approximation

h(1)m (κ|P|) ∼ ı−m eıκ|P|

ıκ|P| , (3)

from which we can rewrite the integral as a convolution

eıκ|P+M |

|P + M | =
eıκ|P|

|P| lim
l→+∞

∫
S2

eıκ〈s,M〉
l∑

m=0

2m+ 1

4π
Pm(cos(s, P))

= eıκ|P|

|P| lim
l→+∞

l + 1

4π

∫
S2

eıκ〈s,M〉 Pl (cos(s, P))− Pl+1(cos(s, P))

1− cos(s, P)
. (4)

The function

(2l + 1)

4π

Pl (cos(s, P))− Pl+1(cos(s, P))

1− cos(s, P)

behaves like sin(l (x− x0))/x− x0 and converges to a Dirac function located ats= P/|P|
asl→ +∞ (see Fig. 1).

Considering the remarks on (4), we proved that there are three regions of approximation.
If P is far enough from the origin thenR(P) can locally be approximated by a single plane
wave, with direction of propagationP/|P|. As P gets closer to the originR(P) will be
approximated not by a single plane wave but rather by a superposition of several plane waves:

• |P| → +∞: one plane wave direction;
• |P|À1: a few directions aroundP/|P|;
• |P| =O(1): all directions have to be considered.

FIG. 2. Plane wave approximation.
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In a multilevel implementation of the FMM, since the clusters never get very far from
each other (relative to their size), we must consider all the discrete directionssk to obtain a
valid approximation. For a more complete description of those properties see Section 3.

1.2. Electric Field Integral Equation

We present the application of the FMM to the resolution of the EFIE (electric field integral
equation).

The resolution of the EFIE with a Galerkin method leads to the resolution ofMa= b
with M andb defined by

Mi, j =
∫
0×0

eıκ|x−y|

4π |x − y|
(

Ji (x)J j (y)− 1

κ2
∇0Ji (x)∇0J j (y)

)
d0(x) d0(y)

bi = ı

κZ

∫
0

Einc
t (x)Ji (x) d0(x),

whereJi (x) andJ j (y) are the Rao–Wilton–Glisson basis functions (see [47]) andEinc
t is

the tangential part of the incident field. See Fig. 3.
The resolution of this linear system with a dense complex matrix can be done with

an iterative method (bi-conjugate gradient, GMRES, etc.). The CPU intensive part of the
resolution becomes the computation of matrix–vector products withM .

We denote byM ′ the matrix

M ′i, j
def= eıκ|xi−xj |

4π |xi − xj | .

The FMM can be applied successfully toM ′. Let us consider two clusters of pointsP1

and P2, of centersO1 and O2. For all pointsxi in P1 andxj in P2 we can accelerate the
matrix–vector product using the plane wave expansion ofM ′i, j ,

M ′i, j =
∑

p

ωpeıκ〈sp,xi−O1〉Tl ,O1−O2(sp)e
ıκ〈sp,O2−xj 〉, (5)

wheresp are the quadrature points onS2 andωp their weight. We will callTl ,O1−O2(sp) the
“transfer function” associated to the pair of clusters (P1, P2).

We now explain how a product withM can be decomposed into products withM ′.
If the edgesi and j are far enough,Mi, j is a regular integral and can be approximated

by a numerical integration with Gauss quadrature points (typically three Gauss points per
triangle).

We denoteevj a vector with three coordinates, wherej corresponds to the Gauss point
xj , andes

j a scalar.

FIG. 3. Domain of definition ofJq(x).
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The product ofM by a vectora is obtained by multiplyingM ′ by ev and byes

Ma⇒ M ′ev and M ′es (6)

with

evj
def= Wj

∑
r

ar Jr (xj ) (7)

es
j

def= ı

κ
Wj

∑
r

ar∇0Jr (xj ), (8)

where the sum onr is a sum on the edges of the triangle containingxj andWj is the weight
associated with the quadrature pointxj .

The vectoru=Ma can then be reconstructed fromf v def= M ′ev and from f s def= M ′es with
the formula

ui =
∑

r

Wr

(〈
Ji (xr ), f vr

〉+ ı

κ
∇0Ji (xr ) f s

r

)
,

where the sum onr is a sum on the Gauss pointsxr for whichJi (xr ) 6= 0.

1.3. MFIE and CFIE Formulation

Some modification have to be made in order to apply the FMM to the magnetic field
integral equation (MFIE) and combined field integral equation (CFIE) formulations. Those
modifications lead to an optimal implementation.

The MFIE is defined by

1

2
J× n+

[ ∫
0

∇y
eıκ|x−y|

4π |x − y| × J(y) d0(y)

]
t

= H inc
t ,

where× is the vectorial product andt denotes the tangential part of a vector. This equation
leads to the following linear system, with a Galerkin method,

1

2

∫
0

Ji (x) · J j (x) d0(x)+
∫
0

d0(x)Ji (x) · n(x)×
∫
0

d0(y)∇y
eıκ|x−y|

4π |x − y| × J j (y) d0(y)

=
∫
0

d0(x)Ji (x) · n(x)× H inc
t (x),

where the scalar product is denoted by a dot.
To achieve a better convergence we use the CFIE, which is a linear combination of EFIE

and MFIE defined by

CFIE= αEFIE+ (1− α) i

κ
MFIE.

The combined field integral equation has the advantage of having a much better condition
number than both EFIE and MFIE. Moreover, an appropriate choice ofα eliminates the
convergence difficulties due to possible resonances on the scattering object. Thus it is the
method of choice for numerical applications.

However, a closer look at MFIE and CFIE reveals that the FMM cannot be applied directly
to those formulas or at least not in a straightforward way as for EFIE.
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Considering Eq. (5), we can derive three other formula:

eıκ|x−y|

4π |x − y| =
∑

p

ωpeıκ〈sp,x−O1〉Tl ,O1−O2(sp)e
ıκ〈sp,O2−y〉

∇x
eıκ|x−y|

4π |x − y| = ıκ
∑

p

ωpeıκ〈sp,x−O1〉Tl ,O1−O2(sp)e
ıκ〈sp,O2−y〉sp

∇y
eıκ|x−y|

4π |x − y| = −ıκ
∑

p

ωpeıκ〈sp,x−O1〉Tl ,O1−O2(sp)e
ıκ〈sp,O2−y〉sp

∇x∇y
eıκ|x−y|

4π |x − y| = κ
2
∑

p

ωpeıκ〈sp,x−O1〉Tl ,O1−O2(sp)e
ıκ〈sp,O2−y〉sp ⊗ sp.

Using these formulas we can derive a scheme adapted to EFIE, MFIE, and CFIE.

EFIE

We can reduce the number of matrix–vector products from four to a minimum of three
with the following trick.

We denote byxj the Gauss quadrature points on the surface of the scattering object.

Reduction to four matrix–vector products.Now we consider two clustersP andQ that
are separated by at least one diameter. The sub-matrixM ′(P, Q) is defined by

M ′(P, Q)i, j =
{

M ′i, j if xi ∈ P andxj ∈ Q

0 otherwise.

We defineM(P, Q) in a similar way.
The product ofM ′(P, Q) with a scalar quantitya′j can be accelerated with the FMM.

The algorithm can be decomposed in three steps:
The first step of the standard FMM consists in computing the radiation functionFQ

defined onS2 with the formula

FQ(sp) =
∑

j/xj∈Q

a′j e
ıκ〈sp,OQ−xj 〉,

whereOQ is the center of the cluster.
The second step (transfer) consists in the application of the transfer function

Gp(sp) = Tl ,OP−OQ(sp)FQ(sp).

The final vector of the matrix–vector product is denoted byu′.
The last step of the standard FMM consists in an integration onS2 for all Gauss points

xi ∈ P,

u′i =
∑

p

ωpeıκ〈sp,xi−Op〉GP(sp).

With this method a matrix–vector product withM(P, Q) is decomposed into four products
with matrix M ′(P, Q), three products for the vectorial quantityev and one fores.
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Reduction to three matrix-vector products.The first and last steps can be modified
adequately. The trick to reduce the number of matrix–vector products is the following. We
denote byFQ(sp) andGP(sp) two vectors defined for all directionssp ∈ S2. Then a matrix–
vector product can be performed for the EFIE formulation with a modification of the first
and last step only of the FMM:

1st step:

FQ(sp) =
∑

r

ar

∑
j

Wj e
ıκ〈sp,OQ−xj 〉(Jr (xj )− 〈sp, Jr (xj )〉sp). (9)

The reader will compare this formula with the previous method where we had to compute

evj
def=Wj

∑
r

ar Jr (xj ) es
j

def= ı

κ
Wj

∑
r

ar∇0Jr (xj )

followed by

∑
j/xj∈Q

eıκ〈sp,OQ−xj 〉
{

evj
es

j

.

The sum onr in Eq. (9) is a sum on all the edges in clusterQ, while the sum onj is a sum
on all the Gauss points for whichJr (xj ) 6= 0. We recall that the Rao–Wilton–Glisson basis
function Jr (x) has nonvanishing valuesonly on the two triangles that have the edger in
common.

The second step of the FMM is applied to each component ofFQ(sp) as before and we
obtain a functionGP(sp).

Last step: With this new formula for the FMM, the productu=M(P, Q)a is obtained
with

ui =
∑

j

Wj

∑
p

ωpeıκ〈sp,xj−OP〉〈Ji (xj ),GP(sp)〉,

where the sum onp is a sum on all the directionssp ∈ S2 and where the sum onj is a sum
on all the Gauss points for whichJi (xj ) is different from zero.

With this method a matrix–vector product with the FMM reduces to three matrix vectors
with scalars: one for each component ofFQ andGP.

MFIE

With the same method we have to perform three matrix–vector products, with the fol-
lowing formula for the first and last step of the FMM:

1st step:

FQ(sp) =
∑

r

ar

∑
j

Wj e
ıκ〈sp,OQ−xj 〉Jr (xj ).

Last step:

ui = −ıκ
∑

j

Wj

∑
p

ωpeıκ〈sp,xj−OP〉〈[(Ji (xj )× n(xj ))× sp],GP(sp)〉. (10)
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This formula is a consequence of

〈Ji (xj ), n(xj )× (GP(sp)× sp)〉 = 〈GP(sp)× sp, Ji (xj )× n(xj )〉
= 〈sp × (Ji (xj )× n(xj )),GP(sp)〉
= −〈(Ji (xj )× n(xj ))× sp,GP(sp)〉

since the term

〈Ji (xj ), n(xj )× (GP(sp)× sp)〉

corresponds to the computation of

∫
0

d0(x)

〈
Ji (x), n(x)×

∫
0

d0(y)J j (y)×∇x
eıκ|x−y|

4π |x − y| d0(y)
〉

=
∫
0

d0(x)

〈
Ji (x), n(x)×

∫
0

d0(y)∇y
eıκ|x−y|

4π |x − y| × J j (y) d0(y)

〉
.

Thus formula (10) corresponds to the MFIE formulation.

CFIE

We notice the fact that

〈[(Ji (xj )× n(xj ))× sp], sp〉 = 0,

from which we can deduce a scheme for the CFIE formulation.

1st step:

FQ(sp) =
∑

r

ar

∑
j

Wj e
ıκ〈sp,OP−xj 〉[(Jr (xj )− 〈sp, Jr (xj )〉sp)].

Last step:

ui =
∑

j

Wj

∑
p

ωpeıκ〈sp,xj−OP〉〈αJi (xj )+ (1− α)[(Ji (xj )× n(xj ))× sp],GP(sp)〉.

The reader will refer to an article by Song and Chew for a similar scheme [53].

2. INTERPOLATION SCHEMES

Notations:

Legendre polynomials Pl (cosθ), l ≥ 0

associated Legendre functionsPml(cosθ),−l ≤ m≤ l , l ≥ 0

spherical harmonics Yml(θ, φ),−l ≤ m≤ l , l ≥ 0
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These functions are defined by

Pl (x)
def= 1

2l l !

dl (x2− 1)l

dxl

Pml(x)=
√
(2l + 1)

(l −m)!

(l +m)!
P̄ml(x)

def= (−1)m

√
(2l + 1)

(l −m)!

(l +m)!
(1− x2)(1/2)m

dmPl (x)

dxm

Yml(θ, φ)
def= 1√

4π
Pm

l (cosθ)eımφ.

The set of functionsYml defines anL2 orthonormal basis ofL2(S2). The functionsP̄ml are
the usual associated Legendre functions. We normalized them so that∫ 1

−1
(Pml(x))

2 dx= 1

Recursion Relations and Summation Formulas

We very briefly recall some very useful formulas:

√
l +m+ 1Pm+1,l (x) = −1√

1− x2

{√
l−m x Pml(x)−

√
2l + 1

2l − 1
(l +m)Pm,l−1

}
√
(l + 1+m)(l + 1−m)

2l + 3
Pm,l+1 =

√
2l + 1x Pml(x)−

√
(l − 1−m)(l +m)

2l − 1
Pm,l−1(x)√

(l +m+ 1)(l +m)

2l + 3
Pm,l+1 =

√
(l −m)(l −m+ 1)

2l − 1
Pm,l−1(x)

−√2l + 1
√

1− x2Pm−1,l (x).

The first terms needed to start the recursion are, for example,

Pmm(x) = (−1)m
√

2m+ 1

2m

2m− 1

2m− 2
· · · 3

2
(1− x2)m/2

Pm,m+1(x) = (−1)m
√
(2m+ 3)

2m+ 1

2m

2m− 1

2m− 2
· · · 3

2
(1− x2)m/2x.

In the rest of the paper we will use the summation formula

(y− x)
n∑

m=0

(2m+ 1)Pm(x)Pm(y) = (n+ 1)(Pn+1(y)Pn(x)− Pn(y)Pn+1(x)).

2.1. Choice of Sample Points onS2

There are several possibilities for the choice of sample points onS2. The most straight-
forward is a uniform distribution of points:

φi = 2π

I
i and θ j = π

J
j .
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This choice has the advantage of being simple but does not allow a very accurate integration
of spherical harmonics. It requires twice as many points as with the Gauss–Legendre points.

A better choice are the Gauss–Legendre points. We want to integrate exactly the spherical
harmonics, which are defined by

Yml(θ, φ) = eımφPml(sinθ).

The integral onS2 is ∫
S2

eımφPml(sinθ) cosθ dθ dφ.

Thus it appears that if we compute this integral using Fubini’s theorem∫ 2π

0
dφ eımφ

∫ π

0
dθPml(sinθ) cosθ

the optimal choice of sample points are uniform points forφi and Gauss–Legendre points
for θ j . With this choice of points, we can integrate exactly allYml,−l ≤m≤ l , 0≤ l ≤ L,
with L + 1 points in theφ direction andL+1

2 points in theθ direction.
There is a simple proof of this fact. Form 6= 0 the discrete integral

∑
l

2π
L+1eımφl will be

equal to zero. Thus independently of the choice of pointsθ j the integration is exact for all
m 6= 0. Now form= 0, we can rewrite∫ π

0
dθPl (sinθ) cosθ =

∫ 1

−1
Pl (x) dx

and the integration is exact if we use Gauss–Legendre points sincePl is a polynomial (the
Pml are in general not polynomials).

However, even better choices can be made with respect to the number of directions on
S2. One of these is explained in [44]. This optimal choice of samples onS2 is guided by
considerations on set of points invariant under groups of rotations. For the circle, in the case
of unit weight function, the optimal choice of points is evenly spaced points. In the case
of the sphere McLaren considers sets of points invariant under one of the finite groups of
rotations associated with regular solids.

If g is the order of the group, the use of an invariant formula reduces by a factor ofg
the number of independent surface harmonics for which the formula must be made exact.
This is proved in [44]. The most spectacular result is a formula with 72 points integrating
exactly 255 spherical harmonics. McLaren also gives a sequential procedure for obtaining
formulae with as many points as needed (Section 7.2 in his paper).

However, such a choice of points is much more difficult to code and leads to increased
difficulties when trying to obtain a fast interpolation scheme using those points. As we will
see, this is much easier with the Gauss–Legendre points.

2.2. Interpolation Algorithms

There are several interpolation algorithms available. We will discuss here the scheme due
to Alpert and Jakob–Chien [5] and the one due to Song, Lu, and Chew [40, 41, 53].
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Another possible scheme is the Lagrange interpolation for which simple error analysis
can be done. The mathematical analysis shows that the convergence is exponential as the
number of points onS2 increases (see [40]). It should be noted that we interpolate functions
which have a finite bandwidth in the Fourier space. Thus optimal efficiency can only be
attained if we take advantage of this property. More general interpolation algorithms such
as Lagrange interpolation or B-splines are not optimal in this case.

Finally, with uniformly spaced samples a few other algorithms are available, such as in
[11, 12]. These use the approximate prolate spheroid series (see [38]) and the sampling
window (Chebyshev sampling series; see [39]).

2.3. Sparse Interpolation

When the size of the problem becomes significant (above 100,000 degrees of freedom)
the interpolations and anterpolations which have to be performed to transfer the information
from the lower level to the upper level and vice versa become significant in terms of CPU.
Several levels (between 5 and 10 for larger cases) are needed and the upper ones involve a
larger and larger number of points onS2 (hundreds of directionsθ andφ). This problem is
specific to the Maxwell case. Applications of the FMM to other areas (molecular dynamics,
electrostatic,N-body problem, etc.) do not have this problem.

We now describe the sparse approximation scheme (Lu and Chew’s scheme) used for the
interpolations and the anterpolations.

Position of the Problem

We denote byf a function defined onS2 and bys a point ofS2.
We will call f a function that is band-limited of degreeK if

f (θ, φ) =
∑

m,l≤K

fmlYml(θ, φ).

The set of functionsYml have the interesting property of uniform resolution onS2. This
means that any rotation off can be represented by the same expansion with appropriately
transformed coefficients. Thus even though the points onS2 have a nonisotropic distri-
bution the property of uniform resolution ofYml ensures that the FMM is an isotropic
scheme.

We denote by(θk, φk), 1≤ k≤ K , a set of quadrature points onS2 and byωk their weights,
such that they integrate exactly all the spherical harmonics of degree inferior to 2K . We
denote byfk, 1≤ k≤ K , the value off at each node and byfk′ its value at the interpolated
nodes(θ ′k′ , φ

′
k′), 1≤ k′ ≤ K ′.

The integerK ′ is supposed to beproportional to K (for the FMM K ′ = 2K ). This
hypothesis is important in order to evaluate the total complexity of the algorithm.

The interpolation or anterpolation consists in performing the following linear transfor-
mation on fk,

fk′ =
∑

m,l≤K

Yml(θ
′
k′ , φ

′
k′)
∑

k

Y∗ml(θk, φk)ωk fk,

for all k′, whereY∗ml denotes the complex conjugate. If we define the following rectangular
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matrix A of sizeK ′ × K ,

Ak′k =
∑

m,l≤K

Yml(θ
′
k′ , φ

′
k′)Y

∗
ml(θk, φk)ωk,

then the interpolation/anterpolation is a simple matrix–vector product

fk′ =
∑

k

Ak′k fk.

However, the complexity of this transform isK ′ × K . Such a scheme would result in an
N2 complexity for the total FMM, whereN is the number of degrees of freedom. Contrary
to the other applications of the FMM, the interpolation and anterpolation algorithms are
thus crucial in the Maxwell (Helmholtz) case to obtain anN log N algorithm.

Possible Approaches

Three approaches to reducing this complexity are possible.

• The semi-naive scheme is the most straightforward and is the one from which Alpert
and Jakob-Chien started their analysis in [5]. The semi-naive scheme consists in performing
a forward FFT, a dense matrix–vector product on theθ angles, and a backward FFT. This
scheme will be preferred when the size of the problem is small. It has a greater asymptotic
complexity(K 1.5) but performs well for small clusters. Moreover this algorithm is exact
(in exact arithmetic).
• The scheme due to Alpert and Jakob-Chien is described in [5]. The first step, as

before, is a forward FFT onφ. Then the dense matrix corresponding to theθ angles is com-
pressed and expedited with a 1D-FMM. Yarvin and Rokhlin [62] present a generalization
of the 1D-FMM applicable to Alpert and Jakob-Chien’s interpolation algorithm. See also
[25, 61]. Finally a backward FFT is performed onφ. Its complexity isO(K log K ). This is
an approximate algorithm.

There are other schemes with similar complexity: see [23, 24].

• The last scheme is the one used in the MLFMA variant of the FMM due to Chew,
Lu, and Song and is used in FISC. It consists in a sparsification ofA. We now describe in
greater details this scheme since our new scheme is a variant of this one. Its complexity is
O(K ).

The idea of the sparsification comes from the 1D Fourier transform. If we replace the
spherical harmonics by an exponential function the expression ofA is replaced by

Bk′k = 2π

K

∑
−K≤l≤K

eıl 2π
K ′ k
′
e−ıl 2π

K k

= 2π

K

eı2π(K+1)s k′
K ′ − k

K d − e−ı2πKs k′
K ′ − k

K d

eı2πs k′
K ′ − k

K d − 1

= 2π

K

sinπ(2K + 1)
(

k′
K ′ − k

K

)
sinπ

(
k′
K ′ − k

K

) .
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FIG. 4. Interpolation matrix.

This function shows a peak aroundkK ∼ k′
K ′ and is decreasing like( k

K )
−1 when| k′

K ′ −
k
K |À1. The width of the peak is of orderO( 1

K ). Figure 4 illustrates the value ofBk′k for
eachk and a givenk′. We plot the discrete values ofBk′k and a continuous function obtained
by replacing the discrete valuekK by a continuous variablex ∈ [0, 1].

Thus it is possible to sparsify the matrixBk′k and remove all the coefficients smaller than
a given threshold.

Let us now assume that we take a constant number of samples per period. Then for a
given accuracyε >0, the number of entries per line with modulus greater thanε is equal to
the number of samples in a segment of lengthC(ε)

K (width of the peak) centered atk′
K ′ . Since

the total number of sample points in [0, 2π ] is proportional toK , the number of entries per
line greater thanε is of orderC(ε) and thus is a constant independent ofK or K ′.

The same decrease can be observed forAk′k and thus it is possible to construct a sparse
approximationÃk′k of Ak′k. With the same type of argument as withBk′k we prove that
the number of entries iñAk′k with modulus greater thanε is equal toC(ε), whereC is a
function ofε only.

This scheme reduces the asymptotic complexity fromO(K log K ) to a minimum of
O(K ).

The total complexity of the FMM is reduced fromO(N log2 N) to O(N log N).

2.4. New Sparsifying Algorithm

It is possible to greatly improve the sparsification of the matrix. A decrease in 1/x as
observed withBk′k means that a significant number of points will have to be considered to
achieve a good accuracy (10−2 relative error for example). Thus the compression factor for
Ak′k will not be so good.

This slow decrease is due to a discontinuity in the Fourier domain. Multiplying byAk′k is
equivalent to computing a forward Fourier transform, then multiplying by the characteristic
function1[−K ,K ] defined by

1[−K ,K ](k) =
{

1 If |k| ≤ K

0 otherwise

and performing a backward Fourier transform.
The slow decrease is due to the discontinuity of1[−K ,K ](k). It is possible to achieve a

faster decrease by choosing a function that goes smoothly from 0 to 1 and from 1 to 0 (see
[19] for a similar idea applied in a different context).
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FIG. 5. Smoothed characteristic function,ω1= 15,ω2= 30.

We now define such a function. We denote byω1 andω2 two positive numbers such that
ω1≤ω2.

Let us compute the continuous Fourier transform of

C(ω) =


cos2

(
(ω+ω1)π

2(ω2−ω1)

)
−ω2 ≤ w ≤ −ω1

1 −ω1 ≤ ω ≤ ω1;
cos2

(
(ω−ω1)π

2(ω2−ω1)

)
ω1 ≤ w ≤ ω2

see Fig. 5.
This Fourier transform can be computed easily sinceC(ω) can be decomposed into a

sum of trigonometric functions; the final expression for the Fourier transform is∫
dωC(ω) eıωx = 1

(1− τ 2)x
[sin(ω2x)+ sin(ω1x)]

= cosπ2 τ

1− τ 2
· 2

x
sin

ω1+ ω2

2
x

τ = x(ω2− ω1)

π
.

The Fourier transform of the characteristic function1[−ω1,ω1] is

2

x
sinω1x.

The factor cosπ2 τ/(1− τ 2) is thus the one responsible for a faster decrease at infinity.
Whenτ¿ 1, ∫

dωC(ω) eıωx ∼ 2

x
sin

ω1+ ω2

2
x.

WhenτÀ 1, ∫
dωC(ω) eıωx ∼ ω1− ω2

πτ 3
(sin(ω2x)+ sin(ω1x)).

With this smoothed characteristic function we achieve a decrease in 1/x3 which improves
on the previous 1/x.
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FIG. 6. Original scheme: log-scale on thez-axis.

We can now define a new interpolation matrix with improved sparsity. Let us denote by
r K the bandwidth of our Fourier window. The new interpolation matrix is

Āk′k =
∑

m,l≤πK

CK ,πK
l Yml(θ

′
k′ , φ

′
k′)Y

∗
ml(θk, φk)ωk (11)

CK ,πK
l =

1 0≤ l ≤ K

cos2
(
(l − K )π

2K (π − 1)

)
K ≤ l ≤ πK .

(12)

Figures 6, 7, 8, and 9 correspond to the new interpolation scheme. The results for the
anterpolation scheme are strictly equivalent, the anterpolation matrix being the transpose
of the interpolation matrix.

To illustrate the improvement, we plot the modulus of the entries in a given line ofAk′k

and Āk′k: see Figs. 6, 7, 8, and 9. The line numberk′ corresponds to the interpolated point
(θ ′, φ′) with θ ′ = 90 andφ′ = 180. Theθ angle is on thex-axis while theφ angle is on the
y-axis. The modulus of the entries is on thez-axis. This clearly shows that the coefficients
have a much faster decrease, which results in a greater sparsity. The threshold corresponds
to a relative error of 10−2.

The second figure (see Figs. 10 and 11) shows the convergence rate of the error in the
approximate interpolation as a function of the number of non-zero entries per line inAk′k

FIG. 7. Original scheme.
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FIG. 8. New improved scheme: log-scale on thez-axis.

and Āk′k. The number of non-zero entries is on the abscissa. This proves that much better
accuracy can be achieved at a lower CPU cost.

Finally we present a comparison with the semi-naive scheme (with complexityO(K 1.5)).
Figure 12 shows that the semi-naive scheme is faster when the clusters are small and that the
“sparse matrix” scheme should be used for the larger clusters. The integern is the number
of non-zero entries per line. Withn= 9 interpolation points, the “sparse matrix” scheme is
always faster than the semi-naive scheme. Forn= 25 the cross point can be situated around
33. This corresponds to a cluster of diameter 10 wavelengths. Forn= 49 the cross point is
around 87 (diameter 28 wavelengths).

Moreover, it should be noted that, with a fixed number of interpolation points per line, the
error slowly decreases with the size of the problem. Thus for a given accuracy the number of
points should be reduced as the size of the problem grows. See Fig. 13 for an illustration. For
example, for a relative error of 1%, the semi-naive scheme should be used forK ≤ 35 (11
wavelengths); then the sparse scheme should be used with only nine interpolation points.
For a 10% relative error the sparse scheme is even more efficient and can be used as soon
asK ≥ 8 (2.5 wavelengths).

Conclusion of the Section

This improved scheme is a variant of the scheme proposed by Chew, Lu, and Song. It
does not change the asymptotic complexity(O(K )) but reduces its constant. This means

FIG. 9. New improved scheme.
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FIG. 10. Convergence rate of the approximate interpolation scheme: log-scale.

FIG. 11. Convergence rate of the approximate interpolation scheme.

FIG. 12. Comparison with the semi-naive scheme.
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FIG. 13. Relative error for the “sparse scheme.”

that the cross point with the semi-naive scheme will be lower and that it will result in an
overall faster implementation of the FMM.

3. TRANSFER FUNCTIONS–TRANSFER LIST

Construction of the Transfer List

We now shortly describe the construction of the transfer list. This is a recursive construc-
tion where two lists must be built: one corresponding to the close clusters and the other
corresponding to the clusters for which a transfer must be performed. Those two lists should
be built simultaneously. See Algorithms 1 and 2.

Optimizing the Construction of the Transfer Functions

A possible optimization can be done regarding the number of transfer functions that
have to be computed. Since the complexity involved in computing a transfer function is

ALGORITHM 1

Construction of the Transfer List

1: FUNCTION RecursiveBuild(Father)
2: for all CloseCluster, close to Fatherdo
3: for all NeighborhoodCluster, son of CloseClusterdo
4: for all CurrentCluster, son of Fatherdo
5: if NeighborhoodCluster is close to CurrentClusterthen
6: Store NeighborhoodCluster in the list CurrentCluster.ListClose
7: else
8: Store NeighborhoodCluster in the list CurrentCluster.ListTransfer
9: end if

10: end for
11: end for
12: end for
13: for all CurrentCluster, son of Fatherdo
14: RecursiveBuild(CurrentCluster)
15: end for
16: End of FUNCTION
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ALGORITHM 2

Main Program

1: FUNCTION main( )
2: CurrentCluster=TopCluster
3: Store CurrentCluster in the list CurrentCluster.ListClose
4: RecursiveBuild(CurrentCluster)

much higher than the complexity involved in applying the transfer vector to a cluster, their
recomputation should be avoided as much as possible.

This can be optimized if the clusters are built using an oct-tree, where a cube is subdivided
in height half-smaller cubes, in a recursive way. If the clusters are constructed this way, then,
for a given level in the tree, the number of possible transfer vectorsOP −OQ is reduced to
a minimum of 316 different vectors(7× 7× 7− 3× 3× 3). Thus an optimized algorithm
would perform the transfers in the following way: see Algorithm 3.

This algorithm will be especially efficient at the lower levels in the tree for which the
number of transfers to be performed is much larger than 316(= 7× 7× 7− 3× 3× 3).

Sparsifying the Transfer Matrix

As first suggested by Wagner and Chew in [58] it is, under certain conditions, possible to
sparsify efficiently the translation matrix. This fact should be connected with our observa-
tions in Section 1.1 regarding the number of plane waves needed to approximate the radiated
field. It has been shown that when the clusters are sufficiently far away from each other
the radiated field can be approximated by superposing a limited number of plane waves
with directions close to(OP −OQ)/|OP −OQ. Figure 1 shows that the transfer function
Tl ,OP−OQ(sk), 1≤ k≤ K has maximal values around

sk ∼ sray
def= OP − OQ

|OP − OQ|
and then decreases whensk is far fromsray.

The expression for the transfer function is

Tl ,OP−OQ(s) =
l∑

m=0

(2m+ 1)ım

4π
h(1)m (κ|OP − OQ|)Pm(cos(s,OP − OQ))

(see Eq. (1) for the notations). The number of termsl in this series is related to the diameter

ALGORITHM 3

Algorithm to Reduce the Number of Transfer

Vectors Computed

1: for all TVector, a transfer vectordo
2: for all (P,Q), pair of clusters such thatOP −OQ=TVectordo
3: Apply TVector to pair (P,Q)
4: end for
5: end for
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FIG. 14. r = 1.1, sparse transfer vector.

of OP andOQ,

l ∼ κDiam(OP)+ Diam(OQ)

2
,

where “Diam” is the diameter.
We proved that the approximation (3) was valid under the assumptionl¿ κ|OP − OQ|.

Thus we expect that the compression rate will depend on the ratio of the distance between
the clusters to their size, denoted byr :

r
def= Diam(OP)+ Diam(OQ)

2|OP − OQ| .

Figures 14–19 illustrate this fact. The relative error is set as before at 10−2 (threshold).
The figures on the right correspond to the usual transfer vector. The peak centered around
θ = 90◦ andφ= 180◦ becomes sharper as the distance between the clusters increase. Thus
fewer terms have to be computed, which results in faster transfers between clusters and a
lower complexity for the total FMM.

As before, we can increase the sparsity of the transfer vectors by using a smoothed
characteristic function, which allows a smooth decay from 1 to zero. This is illustrated by
the figures on the left. They correspond to a transfer vector with improved sparsity defined

FIG. 15. r = 1.1, original transfer vector.



FIG. 16. r = 3.0, sparse transfer vector.

FIG. 17. r = 3.0, original transfer vector.

FIG. 18. r = 6.0, sparse transfer vector.

FIG. 19. r = 6.0, original transfer vector.

216
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by

Tnew
l ,OP−OQ

(s) =
l∑

m=0

(2m+ 1)ım

4π
h(1)m (κ|OP − OQ|)Pm(cos(s,OP − OQ))

+ (2l + 1)ıl

4π
h(1)l (κ|OP − OQ|)

l ′∑
m=l+1

Cl ,l ′
m Pm(cos(s,OP − OQ)),

whereCl ,l ′
m is defined in (12). The reader will notice that we do not consider Hankel functions

with indices superior tol . This is due to the fact that the Hankel functions diverge when
lÀ κ|OP −OQ|. This formula ensures a smooth decay from 1 to 0 and thus improves
considerably the compression rate of the transfer vector. For the figures the integerl ′ was
chosen equal to 2l .

From these numerical experiments we can observe that the number of interpolation
points decrease like 1/|OP −OQ| when |OP −OQ| increases. Thus the number of non-
zero elements per line in the sparsified matrix decreases like 1/|OP −OQ|2.

Remark. Since the total number of samples on the sphere is of orderl 2 and since
there is a decay in 1/|OP −OQ|2, we can deduce that the number of degrees of freedom
in the interaction between the two clusters is of orderr 2. This fact should be connected
with similar results obtained by [28], later refined by [10, 29]. The concept of degrees of
freedom was used successfully by Michielssen and Boag with the construction of the matrix
decomposition algorithm (see [45, 46]).

Conclusion of the Section

In a multilevel FMM, the ratior is close to 1 and thus only a poor compression rate can
be achieved. This limits strongly the usefulness of this sparsifying scheme in a multilevel
implementation.

However, the compression rate improves greatly whenr becomes large compared to 1.
In a one-level FMM, distances between clusters may become large (relative to their size).
Thus this scheme can be used successfully with a one-level FMM, reducing considerably
the time spent in computing and applying the transfer vectors for pairs of clusters very far
away from each other.

4. NUMBER OF POLES IN THE MULTIPOLE EXPANSION

4.1. Convergence Test

A convergence criterion is necessary to determine where the series

(2l + 1) jl (v)h
(1)
l (u)Pl (cosγ ) (13)

should be truncated. The notations arejl , spherical Bessel function;v, diameter of the
cluster;h(1)l , spherical Hankel function;u, distance between the cluster;Pl , Legendre poly-
nomials.

Several formulas can be used to evaluate the number of poles needed in the multipole
expansion:
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1. Formula found in previous papers (see [50, 54]). A semi-empirical formula is used,

l = v + C log(π + v), (14)

whereC is some constant and wherev is the argument of the Bessel functionjl . The positive
numberv is equal to the diameter of the cluster.

2. Since this formula is actually a test on the convergence of the functionjl , we might
as well consider the modulus ofjl , which yields the criterion that

| jl (v)| ≤ ε and l ≥ v.

3. Finally we may test the convergence of the series, which yields the criterion that∣∣(2l + 1) jl (v)h
(1)(u)

∣∣ ≤ ε and l ≥ v.

These different tests when tried numerically gave about the same results, as far as the
CPU time/precision is concerned: Fig. 20. The figure was obtained by choosing differentε

andC for the three methods. These tests correspond to a scattering sphere of radius 1. The
wavelength of the incident wave is equal to 0.7. There are 3072 edges and 1026 points, and
the FMM has four levels. The CPU time (y-axis) corresponds to the resolution of the linear
system with an iterative method (GMRES) and a CFIE formulation. The precision (x-axis)
corresponds to the relative error for the solution, defined as the relative difference between
the FMM and the standard method (full assembly of the CFIE matrix, resolution with the
same iterative method). Thus it measures exactly the error introduced by the FMM.

However, the figure indicates clearly that to maximize the precision while keeping the
CPU time at a minimum, the parameters should be set to

1. C= 2.25.
2. ε= 0.001.
3. ε= 0.66.

With these parameters a relative error of 6× 10−3 can be achieved. These results depend on
the minimal size chosen for the clusters, which we set, for these particular numerical tests,
atκ.d= 1, whered is the size of the cubic cluster (length of the side).

FIG. 20. Convergence tests.
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4.2. Number of Samples onS2

The previous subsection determined the number of termsl to consider in the expansion.
However, it remains now to evaluate the number of samples needed to integrate exactly the
radiation functions. The position of the problem is the following:

As a simplification we takel = v as an approximation of the previous formulav+C
log(π + v). We consider clusterP and its radiation functionFP(sk). The functionFP(sk)

has a bandwidth ofl/2 since the diameter of the cluster is equal tov= l . ThenFP(sk) is
multiplied by the transfer functionTl ,OP−OQ(sk), which has a bandwidth equal tol . Finally
the resulting radiation functionGQ(sk) is multiplied byeικ〈sk,OQ′−OQ〉 (bandwidthl/4) and
anterpolated to obtain the transfer functionGQ′(sk) associated with clusterQ′, one level
below clusterQ. The bandwidth ofGQ′(sk) being equal tol /4 (the diameter of the cluster
is v/2= l/2), we will need to anterpolate the firstl /4 Fourier frequencies. See Fig. 21.

The final bandwidth the function to be integrated is

l

2
+ l + l

4

(
eικ〈sk,OQ′−OQ〉 factor

)+ l

4
(anterpolation scheme).

Thus the total bandwidth is simply 2l . For this level, the number ofφ will be 2l + 1, and
the number ofθ directions(2l + 1)/2≤ l + 1.

However for the interpolation scheme the bandwidth is much lower. The bandwidth of
the function to be integrated is

l

2
(bandwidth ofFP(sk))+ l

2
(interpolation scheme).

Thus the total bandwidth is onlyl . No additional sample points are needed for the interpo-
lation.

If we use the new sparsifying scheme for the anterpolation, then with an anterpolation
function of bandwidthrl /4 (width of the window in the Fourier domain; see Eq. (12) for
the notations), the bandwidth of the function which has to be integrated exactly is

l

2
+ l + l

4
+ rl

4
= 2l

(
1+ r − 1

8

)
.

Thus a good compromise must be found between the compression rate, which requires
largerr , and the total number of samples, which grows withr . The choicer = 3 seems
to be a good choice; it slightly increases the number of samples, 3l 2 instead of 2l 2, while
maintaining an almost optimal compression rate. This choice was made in the figures
illustrating the new sparsifying scheme (Section 2.4).

FIG. 21. Number of samples.
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Minimal Size for the Clusters

For extremely large problems (over 500,000 degrees of freedom) the close interactions,
which have to be computed in a traditional way and cannot be included in the FMM, may
take either significant CPU time, if they are recomputed at each iteration, or significant
in/out core memory, if they are stored. For example for 500,000 degrees of freedom the
storage of 100 non-zero terms per line would require 1.2 GB memory.

A possible solution is to reduce the size of the clusters. However, these is a minimum
size due to numerical roundoff errors. Even though the series

(2m+ 1) jm(v)h
(1)
m (u)Pm(cosγ )

converges for all 0<v<u, the sequenceh(1)m (u) diverges whenu goes to zero. Thus with
double precision computation there is a minimum distance,d, between the centers of the

clusters, which is aroundu
def= k.d∼ 1/2 (for a relative precision of 10−2 for the FMM). This

implies a minimal diameter for the clusters:

Minimal diameter for the clusters∼ λ/10.

Another constraint is the fact that the kernel for Maxwell is singular and thus analytical
integration must be performed when the edges become too close. This also prevents the
clusters from getting too small.

This may prove to be a serious drawback of the method when the number of triangles
per wavelength increase (accumulation of points), such as around features like antennas.
Greengardet al. [31] derived a specific formulation for the FMM to address this difficulty.

5. MEMORY MANAGEMENT

Regarding the memory management there are several possible options to reduce the
memory requirements for the FMM. Here we suggest a simple algorithm which will reduce
the total memory by a factor of 2.

By “tree” we denote the memory needed to construct the oct-tree with the appropriate
connectivity and allocated at each node of the tree to store the radiation function sampled
on S2.

Notations:

P or Q a cluster
L number of levels
sk a point ofS2

FQ(sk) radiation function before transfer
GP(sk) radiation function after transfer

The radiation functionGP(sk) is constructed fromFQ(sk) with the formula

GP(sk) = GP(sk)+ Tl ,OP−OQ(sk)FQ(sk).

The usual implementation of the FMM first allocates one “tree” for the radiation functions,
FQ(sk). Then those radiation functions are constructed starting from the smaller clusters and
then moving from the lower levels to the upper levels. Once this tree is constructed, another
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FIG. 22. Legend of Figs. 23, 24, 25, and 26.

FIG. 23. First step.

FIG. 24. Second step.

FIG. 25. Third step.

FIG. 26. Fourth step.
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is allocated to store the functionsGP(sk), which are initialized by applying the transfer
vector to FQ(sk). Finally, starting from the larger clusters the information contained in
GP(sk) is propagated from the upper levels to the lower levels.

Thus with this algorithm the total amount of memory that has to be allocated is equal to
two trees, one for theFQ(sk) functions and one forGP(sk).

We claim that it is possible to reduce this amount of memory to a minimum of one tree
plus the size of the level that occupy the more memory.

First we allocate a memory space equal to one tree plus the memory used by the largest
level. Then we start computing the radiation functionsFQ(sk) as before, using the first part
of the memory chunk (see Fig. 23).

Then the transfers are performed for the upper level only (level 1) in the remaining chunk
of memory (see Fig. 24).

The functionsFQ(sk) computed at level 1 are no longer needed. The memory space
they occupied can then be reused to propagate the information from the upper level to the
one below, at level 2 (disaggregation step). The transfers can then be performed at level 2
(Fig. 25) and so on until we reach the lower level (level L—Fig. 26).

6. NUMERICAL TESTS: A SPHERE

All the numerical tests are obtained on a Hewlett–Packard workstation PA-8000, with
1-GB memory.

6.1. Classical Method

This section presents the numerical results obtained with the “classical” version of the
code, in which the entire matrix is assembled and stored in the core memory. The main
limitation for this problem is the assembly time, which becomes prohibitive very rapidly,
as well as the total memory required.

We start with test cases using the Gauss method (Table I). Here is the total CPU time,
as well as the total memory used. “Size” corresponds to the size of the object in terms
of wavelength. “Degrees of freedom” corresponds to the number of edges of the mesh.
“Assembly” is the assembly time and “resolution” is the resolution time. “Total memory”
is the memory occupied by the whole matrix.

For the last test, we used the GMRES iterative method. See Table II. GMRES converged
in 19 iterations without a preconditioner, with a stopping criteria of 10−4. We used the
combined field integral formulation with a coefficientα= 0.2

CFIE= αEFIE+ (1− α) ı

κ
MFIE.

The RCS curves (Figs. 27, 28, 29, and 30) correspond to a comparison between the RCS
computed numerically and the exact result computed analytically.

The quality of the results depends on the number of points per wavelength that we used,
eight points per wavelength for this example, and of the error due to the fact that our mesh
does not represent very accurately a sphere. For 300 edges, for example, the sphere is
meshed in a rather crude way. This is why the numerical results are quite different from the
analytical results.
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TABLE I

Classical Method, Gauss Resolution

Size Degrees of freedom Assembly Resolution Total memory

0.67 300 7.47 s 5.02 s 1.44 MB
1 768 41.29 s 1.53 min 9.44 MB
2 3072 6.49 min 1.65 h 151 MB

TABLE II

Classical Method, Iterative Resolution

Size Degrees of freedom Assembly Resolution Total memory

2.82 5808 26 min 5.93 min 540 MB

FIG. 27. 300 degrees of freedom.

FIG. 28. 768 degrees of freedom.
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FIG. 29. 3072 degrees of freedom.

6.2. Fast Multipole Method

The results obtained with the FMM show that the FMM is very precise and that it reduces
very significantly the resources needed to solve the linear system.

The formulation that we use is the combined formulation withα= 0.2. The iterative
method is GMRES (criteria equal to 10−4). For this example we do not use any precondi-
tioner.

We begin with the same tests as with the classical method. “Far away interactions”
corresponds to the memory space occupied by the FMM. “Close interactions” corresponds
to the central band of the matrix, i.e., the part of matrix which has to be computed exactly
with the classical method. “Assembly” corresponds to the CPU time needed to compute the
central band. The rest of the assembly time, for the FMM, is negligible. “Iterations” is the
number of iterations needed for GMRES to converge. See Tables III and IV.

The RCS (Figs. 31, 32, 33, and 34) is completely identical to the one computed before.
We now present the relative difference between the FMM and the classical method with

two different norms:l∞ and l 2. This error is stable and independent of the size of the
problem. See Table V.

FIG. 30. 5808 degrees of freedom.
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TABLE III

FMM for the Sphere, CPU Time

Size Degrees of freedom Assembly Resolution Iterations

0.67 300 3.6 s 14.1 s 13
1 768 9.83 s 37.6 s 15
2 3072 41.3 s 3.68 min 18
2.82 5808 1.3 min 8.7 min 19

TABLE IV

FMM for the Sphere, Memory Space

Size Degrees of freedom Far-away interactions Close interactions

0.67 300 0.31 MB 0.47 MB
1 768 0.58 MB 1.4 MB
2 3072 2.7 MB 5.4 MB
2.82 5808 5.7 MB 10 MB

FIG. 31. 300 degrees of freedom.

FIG. 32. 768 degrees of freedom.
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TABLE V

Relative Error for the FMM

Size Degrees of freedom Norml∞ Norm l 2

0.67 300 0.00413 0.00273
1 768 0.00681 0.00288
2 3072 0.00917 0.00386
2.82 5808 0.00728 0.00393

TABLE VI

FMM for the Sphere, Small Wavelength, CPU Time

Size Degrees of freedom Assembly Resolution Iterations

4 11,532 2.83 min 20.4 min 21
8 47,628 14.1 min 1.5 h 25

11.3 95,052 38.7 min 3.7 h 28

FIG. 33. 3072 degrees of freedom.

FIG. 34. 5808 degrees of freedom.
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TABLE VII

FMM for the Sphere, Small Wavelength, Memory Space

Size Degrees of freedom Far-away interactions Close interactions

4 11,532 11.4 MB 19.5 MB
8 47,628 48.4 MB 83.1 MB

11.3 95,052 102 MB 165 MB

Thanks to the FMM, we are able to solve much larger problems. Here are the results
obtained when increasing progressively the wavelength. See Tables VI and VII.

The RCS curves are shown in Figs. 35, 36, and 37.
A zoom in the shadow region, for the case with 95,052 degrees of freedom, shows that

the solution oscillates around the exact value: see Fig. 38.
Those oscillations are due to the errors in the numerical resolution. We observe that the

RCS reaches a maximum of 2000. The exact value forθ =π (shadow region) is equal
to 1.55. The difference between the two is very large. Thus the resolution errors become
apparent. The difference between the RCS forθ = 0 andθ =π increases with the frequency.
Thus we expect that this oscillation phenomena will increase with the frequency.

To illustrate this observation (Fig. 39), here is the result obtained by simply increasing
the number of points per wavelength:

Number of points per wavelength: 8→ 11.3.

Those oscillations are reduced by a factor of 1.7. The oscillations around the exact value,
with 8 points per wavelength, are equal to 0.44 forθ between 3 andπ (be careful: In Fig. 38
the RCS is shown in decibels). This difference is reduced to 0.26 with 11.3 points per
wavelength.

6.3. Convergence of the FMM

The number of terms used in the series (13), Section 4, is computed with the formula

l = v + C log(π + v).
See Eq. (14).

FIG. 35. 11,532 degrees of freedom.
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FIG. 36. 47,628 degrees of freedom.

FIG. 37. 95,052 degrees of freedom.

FIG. 38. 95,052 degrees of freedom: zoom.
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FIG. 39. 95,052 degrees of freedom: zoom, 11.3 points per wavelength.

We choose different values forC ranging from 1 to 6, in order to observe the reduction
of the error due to the FMM. The value used for the previous tests was 2.25. This is a good
compromise between the CPU time and the numerical precision. See Table VIII.

The RCS curves are all identical to the ones obtained with the classical method. The
difference is too small to be observed.

We observe that after 4 the convergence is stopped. This is due to the numerical instabil-
ities of the method. Let us describe more precisely the cause of those instabilities.

Numerical Instabilities

The numerical error for the FMM depends on the convergence of the sequence

(2m+ 1) jm(v)h
(1)
m (u)Pm(w).

The numerical instabilities are linked to the asymptotic behavior of the Bessel functions,
which we recall: form→+∞,

jm(v) ∼ vm

(2m+ 1)(2m− 1) · · ·3 · 1

ym(u) ∼ − (2m− 1)(2m− 3) · · ·3 · 1
um+1

.

TABLE VIII

Relative Error as a Function of the Number of Poles

in the Expansion

Value ofC Norm l∞ Norm l 2 CPU time

1 0.044 0.0189 4.32 min
2 0.015 0.0069 7.97 min
3 0.0068 0.0032 12.8 min
4 0.00689 0.00304 27.7 min
5 0.00696 0.00303 30.9 min
6 0.00689 0.00302 35.4 min
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The productjm(v)h(1)m (u) converges to 0 buth(1)m (u)→+∞ whenm→+∞. The diver-
gence occurs whenm≥ u. For a stable implementation, it is thus necessary to guarantee
thatm is inferior tou.

Let us consider the smallest clusters, at the lowest level. We denote bya the length of an
edge of one of those clusters.

The factorv corresponds to the size of a cluster (=√3κa), while the factoru corresponds
to the transfer vector, the norm of which is equal to the distance between the centers of two
clusters timesκ. The minimum value foru is thus equal to 2κa. We haveumin= 2√

3
v.

Since the number of terms in the series is given by

l = v + C log(π + v),
we observe a divergence ifv+C log(π + v)≥ u. Thus the stability condition reads

v + C log(π + v) < v
2√
3

(15)

⇔C < v

2√
3
− 1

log(π + v) ∼ 0.15
v

log(π + v) . (16)

Whenv tends to infinity this condition is less and less restrictive sincev/ log(π + v)→+∞.
However, instabilities might appear ifv is too small.

As a conclusion, we have to chooseC depending on the desired accuracy and then a
minimal size for the clusters,v, such that the stability condition is satisfied.

In the code, the length of the side of one cluster is equal to

a = D

κ
,

where, for our example,D= 1. For our test case,a= 0.11 and the average length of an
edge is equal to 0.089. The average bandwidth for the central band (close interactions) is
equal to 86. It is fairly small but for 100,000 edges the storage is already 206 MB. This is
why we tried to reduce it as much as we could.

To illustrate this divergence, we give the maximum value of the transfer function onS2,
depending onC andD. See Table IX.

This confirms our analysis of the stability.
Those problems may become a serious obstruction if there is a large concentration of

points in a small area of the scattering object. This leads to an increase in the part of the
matrix corresponding to the close interactions. We refer the reader to a recent article by
Greengardet al. [31] that addresses this problem.

TABLE IX

Divergence of the Transfer Function

CoefficientC D= 1 D= 2 D= 4

1 4 4 4
2 10 7 4
3 102 50 50
4 3.103 2.103 4.102

5 3.105 3.105 2.105

6 106 7.105 2.105
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7. ASYMPTOTIC GROWTH OF THE COMPLEXITY

The scattering from a sphere allows us to test the FMM on a large band of frequency and
to observe the growth of the CPU time and memory.

Academic Case

The first numerical test corresponds to a matrix–vector productMu, where the matrixM
is defined by

Mi j =
{

eικ|xi −x j |
|xi−xj | if i 6= j

0 otherwise
.

Each coordinateui of u is a random float number. The pointsxi are uniformly distributed
on the surface, with 10 points per wavelength. The radius of the sphere is equal to one.

We reach 1,000,000 points on the surface.
The CPU time corresponds to a single matrix–vector product. The complexity curve

follows very well the theoretical predicted curveO(N log2 N). See Fig. 40.

Scattering from a Sphere

We now measure the CPU time of a single matrix–vector product where this time the
matrix is the CFIE matrix

CFIE= αEFIE+ (1− α) ı

κ
MFIE.

See Figs. 41 and 42.
The test cases correspond to those presented in Section 6.2. However in Fig. 41, the

CPU time forone matrix–vector productonly is represented. In Section 6.2, the CPU time
corresponds to the complete resolution of the linear system with an iterative method.

The curves (Figs. 41 and 42) show that the CPU time and the memory space behave
asymptotically like the theory predicts. Moreover, they show that the FMM should not be
used if the scattering object is too small. Typically the FMM becomes efficient as soon as
the size of the object is superior to a few wavelengths.

FIG. 40. Academic case: matrix–vector product with the FMM.
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FIG. 41. CPU time for a product with the CFIE matrix.

8. NUMERICAL TEST: AN INDUSTRIAL APPLICATION

We now study an industrial test case, the CETAF. This is a standard test case which allows
comparison with available codes from aerospace companies. There is no analytical solution
to this problem. The object is shown in Fig. 43.

We computed the currents induced by the incident wave for the frequencies 7 and 15 GHz.

8.1. 7-GHz Case

The mesh has 45,960 edges. Its size is 11.7 wavelengths. We have 9.84 edges per wave-
length on average.

The incident wave hits the CETAF with an angle of 45◦.

wavelength 0.0428
shortest edge 0.00625
longest edge 0.000674

FIG. 42. Memory space used by the FMM.
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FIG. 43. CETAF.

The performance are shown in Table X. The linear system was solved with GMRES and
was preconditioned with SPAI, which produces a sparse approximate inverse. See [32] for a
description of SPAI and [4] for an application of SPAI to the resolution of integral equations
for Maxwell; see also [6, 20].

Results

A comparison of the RCS computed with our code and with Dassault-Aviation SPECTRE
code is given in Fig. 44. Dassaut-Aviation SPECTRE uses a classical method with a full
assembly of the matrix and the linear system was solved on a parallel computer with a
Gauss method.

This curve shows two peaks which can be interpreted as follows. The first peak occurs for
θ = 45◦ + 90◦ = 135◦. This corresponds to a reflection of the incident wave on the surface of
the CETAF. The second peak corresponds to the shadow region. In this region the scattered
field cancels the incident field. Thus it is a region in which the radiated energy is very
important. This occurs forθ = 45◦ + 180◦ = 225◦. These peaks are very classical in RCS
problems.

We also present a comparison for the current on the surface of the CETAF. The intensity
of the current is shown in Figs. 46 and 47 for the shadow region. Finally the y-coordinate
of the real part of the current is shown in Fig. 48. We observe stripes with a period equal to
the period of the incident wave.

TABLE X

Performances for the 7-GHz Case

Size: 11.7λ
Degrees of freedom: 45,960
Assembly: 12.8 min
Resolution: 2.58 h
Iterations: 47
Far-away interactions: 31.7 MB
Close interactions: 110 MB
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FIG. 44. 45,000 degrees of freedom, 7 GHz, RCS.

FIG. 45. 200,000 degrees of freedom, 15 GHz, RCS.

FIG. 46. 45,000 degrees of freedom, 7 GHz: above.
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FIG. 47. 45,000 degrees of freedom, 7 GHz: shadow region.

The FMM code uses a combined formulation magnetic+ electric. To the contrary
Dassault-Aviation SPECTRE uses an EFIE formulation. This is the main reason that we
observe a slight difference between the two solutions. The error introduced by the FMM is
much smaller than the difference between the two formulations. These tests mostly illustrate
the fact that EFIE and CFIE are equivalent when the size of the edges goes to zero but they do
not produce exactly the same solution if the number of points per wavelength is not sufficient.

8.2. 15-GHz Case

The RCS is represented in Fig. 45. This case was too large to be solved with SPECTRE.
Thus we do not present any comparison this time.

FIG. 48. 45,000 degrees of freedom, 7 GHz:y-coordinate of the real part.
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FIG. 49. 200,000 degrees of freedom, 15 GHz: above.

The intensity of the current is shown in Figs. 49 and 50 for the shadow region. The
performances are given in Table XI.

We also gave new figures, the FMM CPU time and the “close interactions CPU time,”
because for this case we had to adapt the implementation. For such a matrix, the central
band (close interactions) is too large to be stored. Thus the entries in the central band are
either recomputed if the double integral on the surface is numerical (small recomputation
time) or stored if the double integral has to be computed analytically (significant CPU time).
Thus only the “singular” integrals are stored. This is why the assembly time and storage
for the close interactions are relatively small. Moreover, since at each iteration some entries

FIG. 50. 200,000 degrees of freedom, 15 GHz: shadow region.
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TABLE XI

Performances for the 15-GHz Case

Wavelength: 0.02
Number of points per wavelength: 9.18
Size: 25.0λ
Degrees of freedom: 183,840
Assembly: 24.4 min
Resolution: 19.7 h
FMM CPU time: 13.3 h
Close interactions CPU time: 6.5 h
Iterations: 53
Far-away interactions: 140 MB
Close interactions: 170 MB

have to be recomputed, we separated the recomputation time for those entries (6.5 h total)
from the FMM CPU time (13.3 h total). See table XI.

9. CONCLUSION

The FMM reduces the complexity of the resolution of the dense matrix fromN3 (inversion
with the Gauss method) to a minimum ofN log N. In this article are reviewed the difficulties
appearing in the implementation of the method. Improving the implementation results in
a larger domain of application of the FMM, which becomes competitive, compared to a
naive implementation with a dense matrix, at even lowerN. A particularly crucial point
of the implementation is the interpolation and anterpolation steps. We here presented a
variant of the scheme proposed by Chew and Lu in [41]. Its complexity isO(K ), if K is the
number of samples inS2. Compared to Chew and Lu’s algorithm, our scheme improves
the accuracy while reducing the CPU time. This scheme has to be seen as an alternative to
the semi-naive scheme with complexityK 1.5, which performs better for the small clusters.
There are other schemes, albeit with higher asymptotic complexity (K log K ), proposed by
Alpert and Jakob-Chien and Dembart and Yip (see [5, 24]), to which we have not compared
but it is estimated that the new scheme should be used for problems larger than 50,000
unknowns.

Finally we would like to point out that a significant problem was not addressed in this
paper, which is the parallelization of the algorithm. This is a very active area. We will refer
the reader to some very recent publications on this topic: [1, 2, 7, 8, 33, 37, 51, 52].
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